98%
921
2 minutes
20
As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management. Ecosystems vary in their biota, service provision and relative exposure to risks, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581774 | PMC |
http://dx.doi.org/10.1038/s41586-022-05318-4 | DOI Listing |
Environ Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFEcol Lett
September 2025
Department of Biology, University of Florida, Gainesville, Florida, USA.
Animal migration remains poorly understood for many organisms, impeding understanding of movement dynamics and limiting conservation actions. We develop a framework that scales from movements of individuals to the dynamics of continental migration using data synthesis of endogenous markers, which we apply to three North American bat species with unexplained high rates of fatalities at wind energy facilities. The two species experiencing the highest fatality rates exhibit a "pell-mell" migration strategy in which individuals move from summer habitats in multiple directions, both to higher and lower latitudes, during autumn.
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFNat Plants
September 2025
Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, School of Atmospheric Sciences, School of Ecology, Sun Yat-sen University, Zhuhai, China.
Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAI) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes.
View Article and Find Full Text PDFNat Microbiol
September 2025
School of Oceanography, University of Washington, Seattle, WA, USA.
The cyanobacterium Prochlorococcus is Earth's most abundant photosynthetic organism and crucial to oceanic ecosystems. However, its sensitivity to a changing climate remains unclear. Here we analysed decade-long field measurements using continuous-flow cytometry from our SeaFlow instrument, collecting per-cell chlorophyll fluorescence and size data for ~800 billion phytoplankton cells across the tropical and subtropical Pacific Ocean to quantify the temperature dependence of cell division.
View Article and Find Full Text PDF