98%
921
2 minutes
20
Background: Previous studies have shown that long noncoding RNAs (lncRNAs) play a key role in cancer, including colon cancer (CC). However, the exact role of long noncoding RNA 01124 (LINC01124) in CC and its mechanisms of action remain unknown. In this study, we investigated the functional effects and the possible mechanism of LINC01124 in CC.
Methods: We first determined the expression of LINC01124 in CC tissues (The Cancer Genome Atlas (TCGA) database) and cell lines (quantitative real-time polymerase chain reaction (qRT-PCR)). Functional analysis via Cell Counting Kit-8 (CCK-8), colony formation, cell cycle, wound healing and Transwell assays were performed, and a mechanistic experiment was performed with the western blotting. The function of LINC01124 was also determined in vivo using nude BALB/c mice.
Results: The results showed that LINC01124 was upregulated in CC tissues and cell lines. Functional studies showed that knockdown of LINC01124 significantly suppressed the proliferation, migration, and invasion of colon cancer cells in vitro and in vivo. Subsequent mechanistic experiments indicated that LINC01124 acted as a sponge to suppress microRNA 654-5p, which targeted HAX-1. Downregulation of LINC01124 decreased the expression of HAX-1, and overexpression of the miR-654-5p inhibitor attenuated the sh-LINC01124-induced inhibition of CC cell proliferation, migration, and invasion.
Conclusion: Collectively, this study revealed that the knockdown of LINC01124 inhibited the malignant behaviors of CC via the miR-654-5p/HAX-1 axis, suggesting that LINC01124 might be a therapeutic target for CC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526654 | PMC |
http://dx.doi.org/10.1155/2022/1092107 | DOI Listing |
Acta Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
Inflamm Res
September 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.
Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.
JACC Basic Transl Sci
September 2025
BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak
Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.
View Article and Find Full Text PDFJ Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDF