Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The consumption of plant proteins is increasing worldwide. These proteins have an important role in human nutrition as well as in the technological properties of foods. Thus, there is a great interest in exploring new sources of plant proteins, such as macauba (Acrocomia aculeata), which is a promising tropical palm tree, native to Brazil, whose fruits are rich in oil, proteins and dietary fiber. Hence, the objective of this work was to obtain and evaluate the physico-chemical and techno-functional properties of the macauba kernel protein isolate (MKPI). Defatted macauba kernel flour was obtained and used to produce the MKPI by isoelectric precipitation. Then, the proximate composition, amino acid profile, and physico-chemical and techno-functional properties of the MKPI were determined. The MKPI stood out for its high protein content (94.9%) and high levels of arginine (16.21%) and glutamate (20.84%). The MKPI average isoelectric point was at pH 4.9 and its proteins showed low solubility in the pH range from 4.0 to 6.0. Moreover, the hydrophobicity of MKPI proteins was higher at pH 3.5 than at pH 7.0, and they had higher oil holding capacity (153.77%) than water holding capacity (97.29%). Regarding the MKPI emulsifying and gelling properties, emulsions with 0.5% and 1.0% of MKPI remained stable during storage and the minimum gelling concentration was 14%. Thus, the MKPI has a great potential to be produced and used by the food industry due to its nutritional and techno-functional properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111848DOI Listing

Publication Analysis

Top Keywords

techno-functional properties
16
physico-chemical techno-functional
12
mkpi
9
properties macauba
8
macauba acrocomia
8
acrocomia aculeata
8
kernel protein
8
protein isolate
8
plant proteins
8
macauba kernel
8

Similar Publications

Tussah pupa protein (TPP), rich in diverse bioactive components and demonstrating extensive physiological activities, has attracted attention in food processing. However, its limited emulsion stability restricts application potential, requiring improvement of techno-functional properties. The effects of myofibrillar protein (MP) compounding coupled with ultrasonic treatment on the emulsifying properties and nutritional value of TPP were systematically investigated from a multi-scale perspective in this study.

View Article and Find Full Text PDF

Limosilactobacillus reuteri probiotics were encapsulated in Kudzu starch (KS) and Hemp protein (HP) complex coacervates (CC), followed by spray drying, to enhance their stability and boost their viability. The optimized conditions for CC consisted of a KS:HP ratio of 1:2 (w/w) and pH 5.0.

View Article and Find Full Text PDF

This study investigated the impacts of growth seasons and maturity stages on the processing properties of starch isolated from 'Dwarf Cavendish' banana. The analysis revealed that seasonal variations and maturity stages had significant impacts on the characteristics of the starch. Summer banana starch (SBS) demonstrated a more ordered structure, enhanced thermal stability, higher viscosity, and increased content of resistant starch (RS) compared to winter banana starch (WBS).

View Article and Find Full Text PDF

This study investigated how different dietary roughages, Napier-Pakchong (NP), jumbo sorghum (JB), and rice straw (RS) fed to Holstein-Friesian (HF) crossbred cows affect the nutritional, techno-functional, and sensory properties of mozzarella cheese under tropical conditions in Bangladesh. Iso-nitrogenous (≈12.54% CP) and iso-energetic (ME ≈2.

View Article and Find Full Text PDF

Cheese-whey is a valuable byproduct of the dairy industry, rich in various nutritional components such as minerals, lactose, and proteins. Whey proteins, often used in concentrate form, are widely applied in the food industry due to their diverse chemical, physical, and techno-functional properties. This study aimed to investigate the physicochemical composition and biochemical characteristics of camel and bovine whey after partial demineralization at a laboratory scale.

View Article and Find Full Text PDF