98%
921
2 minutes
20
Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet's breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth's microbiome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-022-01228-3 | DOI Listing |
J Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
September 2025
Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.
View Article and Find Full Text PDFPlant Physiol
September 2025
Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3508 TB, the Netherlands.
The increasing demand for sustainable agricultural practices has driven a renewed interest in plant-microbiome interactions as a basis for the next "green revolution." Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root microbiome.
View Article and Find Full Text PDFJ Endocrinol
September 2025
School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
Gut dysbiosis and an increased risk of respiratory infection in type 2 diabetes have been well recognised. However, the relationship between the gut and respiratory pathobionts carriage rate in the Type 2 diabetic Malaysian population is understudied. To address the knowledge gap, we profiled the gut and upper respiratory tract microbial composition, as well as the urine metabolome of 31 type 2 diabetic adults and 14 non-diabetes adults.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
There is a growing body of evidence that the interaction between various microbial organisms and the human host can affect various physical and even mental health conditions. Bidirectional communication occurs between the brain and the gut microbiome, referred to as the brain-gut-microbiome axis. During aging, changes occur to the gut microbiome due to various events and factors such as the mode of delivery at birth, exposure to medications (e.
View Article and Find Full Text PDF