98%
921
2 minutes
20
Invasive species have profound negative impacts on native ranges. Unraveling the mechanisms employed by invasive plant species is crucial to controlling invasions. One important approach that invasive plants use to outcompete native plants is to disrupt mutualistic interactions between native roots and mycorrhizal fungi. However, it remains unclear how differences in the competitive ability of invasive plants affect native plant associations with mycorrhizae. Here, we examined how a native plant, , responds to invasive plants that differed in competitive abilities (i.e., as represented by aboveground plant biomass) by measuring changes in root nitrogen concentration (root nutrient acquisition) and mycorrhizal colonization rate. We found that both root nitrogen concentration and mycorrhizal colonization rate in the native plant were reduced by invasive plants. The change in mycorrhizal colonization rate of the native plant was negatively correlated with both aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant in monocultures relative to mixed plantings. In contrast, the change in root nitrogen concentration of the native plant was positively correlated with aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant. When we compared the changes in mycorrhizal colonization rate and root nitrogen concentration in the native plant grown in monocultures with those of native plants grown with invasive plants, we observed a significant tradeoff. Our study shows that invasive plants can suppress native plants by reducing root nutrient acquisition rather than by disrupting symbiotic mycorrhizal associations, a novel finding likely attributable to a low dependence of the native plant on mycorrhizal fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512660 | PMC |
http://dx.doi.org/10.1016/j.pld.2021.12.004 | DOI Listing |
Am J Bot
September 2025
Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China.
Premise: The diversity-invasibility hypothesis suggests that native plant communities with high species diversity are more resistant to invasions by exotic species compared to those with fewer species. This resistance stems from more complete resource use and stronger biotic interactions in diverse communities, which limit opportunities for invaders to establish. However, this resistance could potentially be weakened by environmental stressors, including elevated tropospheric ozone.
View Article and Find Full Text PDFApidologie
September 2025
Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
Unlabelled: High infestation levels of small hive beetle (SHB), , can cause more damage to honeybee, , host colonies. However, the spatiotemporal variation of SHB infestations is poorly understood. Here, we show that SHB infestations can be equally high in native and invasive ranges, suggesting that differences between host populations are the key criterion for damage.
View Article and Find Full Text PDFBiol Invasions
September 2025
Ashoka Trust for Research in Ecology and the Environment, Bangalore, Karnataka India.
Unlabelled: Whilst the impacts of individual invasive species are relatively well studied, the combined effects of both plant and animal invasive species on multispecies assemblages are poorly understood. We studied the impact of two invasive species-the mesquite tree, and free-ranging dog, on a guild of native mesocarnivores in the human-dominated grasslands of the Thar desert. We found that the mesquite had varying effects on the mesocarnivore guild, benefiting generalist species such as the golden jackal and jungle cat , while negatively affecting open habitat specialist species such as Indian desert fox , Indian fox , and desert cat .
View Article and Find Full Text PDFMitochondrial DNA B Resour
September 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Linnaeus 1753 is a herbaceous perennial medicinal plant of the family Scrophulariaceae, native throughout eastern and central North America. In this study, the first complete chloroplast genome of was reported and phylogenetic analysis was conducted with other 11 species from Scrophulariaceae. The chloroplast genome was 152,414 bp with 132 genes and includes a large single-copy (LSC) region (83,583 bp), a small single-copy (SSC) region (17,925 bp), and a pair of inverted repeat (IRs) regions (25,453 bp).
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia. Electronic address:
Indigenous Australians have long recognised and utilised the therapeutic potential of Australian native plants for generations to treat and manage various diseases. In recent years, these native plants have been explored in preclinical research for their chemical profiles and therapeutic properties for conditions such as skin disorders, colds and flu, various cancers, neurological disorders, metabolic syndrome, and other inflammatory conditions. Notable species studied include Kakadu plum, Davidson's plum, Burdekin plum, Illawarra plum, anise myrtle, lemon myrtle, lemon aspen, quandong, muntries, and Tasmanian pepperberry.
View Article and Find Full Text PDF