98%
921
2 minutes
20
Nanoparticle delivery systems have been shown to improve the therapeutic efficacy of anti-cancer drugs, including a variety of drugs for the treatment of hepatocellular carcinoma (HCC). However, the current systems show some limitations, and the delivery of more effective nanoparticle systems for anti-HCC drugs with better targeting ability are needed. Here, we created paclitaxel (PTX)/norcantharidin (NCTD)-loaded core-shell lipid nanoparticles modified with a tumor neovasculature-targeted peptide (Ala-Pro-Arg-Pro-Gly, APRPG) and investigated their anti-tumor effects in HCC. Core-shell-type lipid nanoparticles (PTX/NCTD-APRPG-NPs) were established by combining poly(lactic-co-glycolic acid) (PLGA)-wrapped PTX with phospholipid-wrapped NCTD, followed by modification with APRPG. For comparison, PTX-loaded PLGA nanoparticles (PTX-NPs) and PTX/NCTD-loaded core-shell-type nanoparticles without APRPG (PTX/NCTD-NPs) were prepared. The and anti-tumor effects were examined in HepG2 cells and tumor-bearing mice, respectively. Morphological and release characterization showed that PTX/NCTD-APRPG-NPs were prepared successfully and achieved up to 90% release of PTX in a sustained manner. Compared with PTX/NCTD-NPs, PTX/NCTD-APRPG-NPs significantly enhanced the uptake of PTX. Notably, the inhibition of proliferation and migration of hepatoma cells was significantly higher in the PTX/NCTD-APRPG-NP group than those in the PTX-NP and PTX/NCTD-NP groups, which reflected significantly greater anti-tumor properties as well. Furthermore, key molecules in cell proliferation and apoptosis signaling pathways were altered most in the PTX/NCTD-APRPG-NP group, compared with the PTX-NP and PTX/NCTD-NP groups. Collectively, PTX/NCTD-loaded core-shell lipid nanoparticles modified with APRPG enhance the effectiveness of anti-HCC drugs and may be an effective system for the delivery of anti-HCC drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515951 | PMC |
http://dx.doi.org/10.3389/fonc.2022.932156 | DOI Listing |
Appl Microbiol Biotechnol
September 2025
Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China.
Mol Cell Biochem
September 2025
Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.
5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.
View Article and Find Full Text PDFChronobiol Int
September 2025
Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
Lung cancer remains one of the most fatal cancers, with cigarette smoke (CS) exposure being a major risk factor due to its role in triggering oxidative stress. Disruption of circadian rhythms, increasingly common in modern lifestyles, has also been linked to cancer progression. Targeting both oxidative imbalance and circadian disruption may offer a more effective therapeutic approach.
View Article and Find Full Text PDFHepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDF