Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter.

BMC Genomics

Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems. On coral reefs, an ecological shift from coral-dominated to algal-dominated ecosystems is currently occurring. Given that benthic corals and macroalgae release different types of DOM, in different abundances and with different bioavailability to sponge holobionts, it is important to understand how the metabolic activity of the host and associated microbiota change in response to the exposure to both DOM sources. Here, we look at the differential gene expression of two sponge holobionts 6 hours after feeding on naturally sourced coral- and macroalgal-DOM using RNA sequencing and meta-transcriptomic analysis.

Results: We found a slight, but significant differential gene expression in the comparison between the coral- and macroalgal-DOM treatments in both the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Haliclona vansoesti. In the hosts, processes that regulate immune response, signal transduction, and metabolic pathways related to cell proliferation were elicited. In the associated microbiota carbohydrate metabolism was upregulated in both treatments, but coral-DOM induced further lipid and amino acids biosynthesis, while macroalgal-DOM caused a stress response. These differences could be driven by the presence of distinct organic macronutrients in the two DOM sources and of small pathogens or bacterial virulence factors in the macroalgal-DOM.

Conclusions: This work provides two new sponge meta-transcriptomes and a database of putative genes and genetic pathways that are involved in the differential processing of coral- versus macroalgal-DOM as food source to sponges with high and low abundances of associated microbes. These pathways include carbohydrate metabolism, signaling pathways, and immune responses. However, the differences in the meta-transcriptomic responses of the sponge holobionts after 6 hours of feeding on the two DOM sources were small. Longer-term responses to both DOM sources should be assessed to evaluate how the metabolism and the ecological function of sponges will be affected when reefs shift from coral towards algal dominance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520939PMC
http://dx.doi.org/10.1186/s12864-022-08893-yDOI Listing

Publication Analysis

Top Keywords

sponge holobionts
20
dom sources
16
associated microbiota
12
sponge
8
organic matter
8
host associated
8
differential gene
8
gene expression
8
holobionts 6 hours
8
6 hours feeding
8

Similar Publications

Sponges serve as the natural cleaner in diverse aquatic ecosystems, harboring diverse microbial communities and forming a highly specialized holobiont. The present study provides the first insights into the bacterial communities associated with freshwater sponges of Sundarban, highlighting their distinct microbial community composition compared to the surrounding water using 16S rRNA gene-based metataxonomic analyses. The analysis encompassing six sponge species collected from Sagar Island and Ghoramara revealed distinct variations in microbial abundance and diversity compared to their ambient water, suggesting selective bacterial associations with the sponges.

View Article and Find Full Text PDF

Guanidine alkaloids from marine sponges.

Alkaloids Chem Biol

July 2025

School of Biological and Chemical Sciences, Ryan Institute, University Road, Galway, Ireland.

Over the past 70 years, marine biodiversity has been recognised as a rich source of unique chemical compounds with wide-ranging applications in the blue bioeconomy. Among marine organisms, sponges have historically been a key focus of marine biodiscovery due to their high potential for yielding novel compounds. More recently, attention has also turned to their associated microbiota-including bacteria, fungi, and cyanobacteria-which have emerged as more sustainable sources of bioactive metabolites.

View Article and Find Full Text PDF

Background: Marine sponges and their microbiomes function together as holobionts, playing essential roles in ecosystem dynamics and exhibiting remarkable adaptability across depth gradients. This study utilized a multi-omics approach, integrating microbiome and metabolome analyses, to investigate adaptive strategies in sponge holobionts inhabiting the mesophotic (80-125 m), upper-rariphotic (125-200 m), and lower-rariphotic (200-305 m) zones of Curaçao. We hypothesized that depth-related environmental factors drive distinct adaptive strategies, similar to patterns observed in fish and coral assemblages.

View Article and Find Full Text PDF

Coral reefs face severe threats from human activity, resulting in drastic biodiversity loss. Despite the urgency of safeguarding these ecosystems, we know little about the ecological impacts of losing coral reef host-associated microbial communities (microbiomes). Here, we experimentally studied the microbiomes attached to or released from seven benthic reef hosts belonging to the functional groups of stony corals, soft corals, macroalgae, and sponges while manipulating the coral reef metacommunity to mimic biodiverse or degraded reef habitats.

View Article and Find Full Text PDF

Marine sponge holobionts are important contributors to numerous biogeochemical cycles, including the natural organohalogen cycle. Sponges produce diverse brominated secondary metabolites, which select for a population of anaerobic debrominating bacteria within the sponge body. Sponge microbiomes can be host-specific, but the selection and host-specificity of debrominating bacteria are unknown currently.

View Article and Find Full Text PDF