Publications by authors named "Ana Riesgo"

Mechanisms for sex determination are highly diverse among animals and can evolve rapidly across taxonomic groups. This fundamental process dictates an animal's sexual fate and ultimately its development. Recent research has suggested that cephalopods follow a ZZ/Z0 sex determination (where males are homozygous and females are hemizygous) that originated at least 480 million years ago, making it one of the oldest conserved sex determination systems known for animals.

View Article and Find Full Text PDF

Approximately, 40% of earthworm species can reproduce by parthenogenesis. This is the case for the cosmopolitan species, Aporrectodea trapezoides, although sexual forms have been described sporadically. We analyse the genotypes and microbiomes of 30 individuals from four localities where both forms appear in order to understand the evolutionary mechanisms related to parthenogenesis.

View Article and Find Full Text PDF

We present a genome assembly from a specimen of (kidney sponge; Porifera; Demospongiae; Chondrillida; Chondrillidae). The genome sequence has a total length of 117.37 megabases.

View Article and Find Full Text PDF

Geodia hentscheli, a species forming sponge grounds in the North Atlantic and Arctic Oceans, is a common deep-sea organism, that plays a fundamental role in forming biogenic habitats. However, there is little information about gene flow and adaptation patterns of this species, which is crucial to develop effective management/conservation plans under current global change scenarios. Here, we generated ddRADseq data from 110 specimens of G.

View Article and Find Full Text PDF

Ribbon worms (Nemertea) are a less-known group of invertebrates, specially challenging for taxonomic studies due to the scarcity of external morphological features. As a consequence, the number of known nemertean species might represent just a small fraction of the true diversity of the phylum. The present study increases the number of known ribbon worm species with the description of the accordion worm sp.

View Article and Find Full Text PDF

Unlabelled: Sponge-associated microbes play fundamental roles in regulating their hosts' physiology, yet their contribution to sexual reproduction has been largely overlooked. Most studies have concentrated on the proportion of the microbiome transmitted from parents to offspring, providing little evidence of the putative microbial role during gametogenesis in sponges. Here, we use 16S rRNA gene analysis to assess whether the microbial composition of five gonochoristic sponge species differs between reproductive and non-reproductive individuals and correlate these changes with their gametogenic stages.

View Article and Find Full Text PDF

How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF
Article Synopsis
  • A genomic database encompassing all eukaryotic species on Earth is crucial for scientific advancements, yet most species lack genomic data.
  • The Earth BioGenome Project (EBP) was initiated in 2018 by global scientists to compile high-quality reference genomes for approximately 1.5 million recognized eukaryotic species.
  • The European Reference Genome Atlas (ERGA) launched a Pilot Project to create a decentralized model for reference genome production by testing it on 98 species, providing valuable insights into scalability, equity, and inclusiveness for genomic projects.
View Article and Find Full Text PDF

The deep-sea remains the biggest challenge to biodiversity exploration, and anthropogenic disturbances extend well into this realm, calling for urgent management strategies. One of the most diverse, productive, and vulnerable ecosystems in the deep sea are sponge grounds. Currently, environmental DNA (eDNA) metabarcoding is revolutionising the field of biodiversity monitoring, yet complex deep-sea benthic ecosystems remain challenging to assess even with these novel technologies.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has now become a core approach in marine biodiversity research, which typically involves the collection of water or sediment samples. Yet, recently, filter-feeding organisms have received much attention for their potential role as natural eDNA samplers. While the indiscriminate use of living organisms as 'sampling tools' might in some cases raise conservation concerns, there are instances in which highly abundant sessile organisms may become a nuisance as biofouling on artificial marine structures.

View Article and Find Full Text PDF

Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients.

View Article and Find Full Text PDF

Background: Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood.

View Article and Find Full Text PDF

Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used archived marine sponge specimens to successfully analyze and reconstruct the fish communities in different North Atlantic regions, depths, and protection levels.
  • * The study suggests that sponges, including those already stored in museums, are a valuable and cost-effective resource for enhancing ocean biodiversity monitoring efforts.
View Article and Find Full Text PDF

Background: Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera.

Results: We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida.

View Article and Find Full Text PDF

In the era of human-driven climate change, understanding whether behavioural buffering of temperature change is linked with organismal fitness is essential. According to the 'cost-benefit' model of thermoregulation, animals that live in environments with high frequencies of favourable thermal microclimates should incur lower thermoregulatory costs, thermoregulate more efficiently and shunt the associated savings in time and energy towards other vital tasks such as feeding, territory defence and mate acquisition, increasing fitness. Here, we explore how thermal landscapes at the scale of individual territories, physiological performance and behaviour interact and shape fitness in the southern rock agama lizard ().

View Article and Find Full Text PDF

Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species.

View Article and Find Full Text PDF

Background: Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems.

View Article and Find Full Text PDF

In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance.

View Article and Find Full Text PDF

Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean medfly, Ceratitis capitata, is one of the most damaging representatives of a group of rapidly expanding species in the family Tephritidae, due to their wide host range and high invasiveness potential. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate the population genomic structure and phylogeographical history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia.

View Article and Find Full Text PDF

Large and hyperdiverse marine ecosystems pose significant challenges to biodiversity monitoring. While environmental DNA (eDNA) promises to meet many of these challenges, recent studies suggested that sponges, as "natural samplers" of eDNA, could further streamline the workflow for detecting marine vertebrates. However, beyond pilot studies demonstrating the ability of sponges to capture eDNA, little is known about the dynamics of eDNA particles in sponge tissue, and the effectiveness of the latter compared to water samples.

View Article and Find Full Text PDF