Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Immune system dysfunction has been proven to be an important pathological event in Alzheimer's disease (AD). Mild cognitive impairment (MCI), as a transitional stage between normal cognitive function and AD, was an important research object for the screening of early diagnostic markers and therapeutic targets for AD. However, systematic assessment of peripheral immune system changes in MCI patients and consistent analysis with that in the CNS were still lacking.

Methods: Peripheral blood transcriptome data from the AddNeuroMed Cohort ( = 711) was used as a training dataset to assess the abundance of 24 immune cells through ImmuCellAI and to identify MCI-related immune signaling pathways and hub genes. The expression level of the immune hub gene was validated in peripheral blood ( = 587) and brain tissue (78 entorhinal cortex, 140 hippocampi, 91 temporal cortex, and 232 frontal cortex) validation datasets. Finally, reliable immune hub genes were applied for Gene Set Enrichment Analysis and correlation analysis of AD pathological characteristics.

Results: MCI patients have early changes in the abundance of various types of immune cells in peripheral blood, accompanied by significant changes in NF-kB, TNF, JAK-STAT, and MAPK signaling pathways. Five hub immune-related differentially expressed genes (NFKBIA, CD4, RELA, CASP3, and HSP90AA1) were screened by the cytoHubba plugin in Cytoscape and the least absolute shrinkage and selection operator (LASSO) regression. Their expression levels were significantly correlated with infiltration score and the abundance of monocytes, natural killer cells, Th2 T cells, T follicular helper cells, and cytotoxic T cells. After validation with independent datasets derived from peripheral blood and brain, RELA and HSP90AA1 were identified as two reliable immune hub genes in MCI patients and had consistent changes in AD. The Gene Set Enrichment Analysis (GSEA) showed that their expression levels were closely associated with Alzheimer's disease, JAK-STAT, calcium signaling pathway, etc. In addition, the expression level of RELA was positively correlated with β- and γ-secretase activity and Braak stage. The expression level of HSP90AA1 was negatively correlated with α- and β-secretase activity.

Conclusion: Immune system dysfunction was an early event in AD. It provides a new target for the early diagnosis and treatment of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501700PMC
http://dx.doi.org/10.3389/fimmu.2022.986346DOI Listing

Publication Analysis

Top Keywords

peripheral blood
20
alzheimer's disease
12
immune system
12
mci patients
12
hub genes
12
expression level
12
immune hub
12
immune
9
blood brain
8
associated alzheimer's
8

Similar Publications

Background: Anaplastic lymphoma kinase (ALK)-positive primary CNS anaplastic large cell lymphoma (ALCL) is an extremely rare pediatric malignancy. Its radiological appearance often mimics infectious or glial lesions, complicating diagnosis and delaying treatment.

Observations: The authors report the case of a 10-year-old immunocompetent female who presented with absence seizures and vomiting.

View Article and Find Full Text PDF

Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.

View Article and Find Full Text PDF

Mass spectrometry (MS) is an emerging tool in multiple myeloma that detects and quantifies monoclonal proteins in the peripheral blood with sensitivity several orders of magnitude greater than conventional serum protein electrophoresis and immunofixation. Both intact light chain (top-down) and clonotypic peptide (bottom-up) MS approaches have demonstrated sensitivity comparable to-or even surpassing-BM-based assessments using next generation flow cytometry or sequencing. However, due to the delayed clearance of paraproteins, MS may be less informative for early response assessment, underscoring the need to define the optimal timing for evaluation.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Introduction: Elevated peripheral blood monocyte counts (PBMC) are associated with disease progression and mortality in patients with idiopathic pulmonary fibrosis (IPF). However, evidence for progression stems primarily from highly curated cohort studies or post-hoc analysis of clinical trials. We used real-world data to examine the association between PBMC and IPF mortality among a national cohort of Veterans with IPF.

View Article and Find Full Text PDF