Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tire particles pose a potential threat to terrestrial organisms because they are deposited in large quantities in the soil by tire wear abrasion, and moreover their chemical complexity poses an additional risk. Microplastics can affect several physiological processes in organisms, including those related to immunity. Therefore, we investigated the expression profile of selected immune-related genes (MnSod, Manganese Superoxide dismutase; Cat, Catalase; CypG, Cyclophilin G; Nos, Nitric oxide synthase; Ppae2a, Prophenoloxidase-activating enzyme 2a; Dscam, Down syndrome cell adhesion molecule; Myd88, Myeloid-differentiation factor 88; Toll4, Toll-like receptor 4; Mas-like, Masquerade-like protein) in haemocytes and the digestive gland hepatopancreas of terrestrial crustacean Porcellio scaber after two different time exposures (4 and 14 days) to tire particles in soil. Our results reveal for the first time the response of P. scaber after microplastic exposure at the transcriptome level. We observed time- and tissue-dependent changes in the expression of the analysed genes, with more pronounced alterations in haemocytes after 14 days of exposure. Some minor changes were also observed in hepatopancreas after 4 days. Changes in the expression profile of the analysed genes are a direct indication of a modulated immune status of the test organism, which, however, does not represent an adverse effect on the test organism under the given conditions. Nevertheless, the question remains whether the observed change in immune status affects the immunocompetence of the test organism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120233DOI Listing

Publication Analysis

Top Keywords

changes expression
12
expression profile
12
test organism
12
immune-related genes
8
terrestrial crustacean
8
crustacean porcellio
8
porcellio scaber
8
tire particles
8
analysed genes
8
immune status
8

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF