Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202212720DOI Listing

Publication Analysis

Top Keywords

d-amino acid
8
acid oxidase
8
hydrophilicity-based engineering
4
engineering active
4
active pocket
4
pocket d-amino
4
oxidase leading
4
leading highly
4
highly improved
4
improved specificity
4

Similar Publications

Introduction: Anxiety has been described in the initial stages of schizophrenia, and affective flattening in the chronic illness. The etiology remains unknown. Ketamine, a noncompetitive N-Methyl-D-amino-aspartate acid (NMDA) receptor antagonist, is used in rats as a translational model of schizophrenia.

View Article and Find Full Text PDF

d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.

View Article and Find Full Text PDF

With increasing antibiotic resistance and the paucity of new antibiotics in the development pipeline, exploration of antimicrobial peptide applications alone or in combination with existing antibiotics is more crucial than ever. The recent study by J. Varin-Simon, E.

View Article and Find Full Text PDF

D-glu is a key component of peptidoglycan (PG) and is essential for growth in most bacteria. To assess constraints on PG evolution and bacterial requirements for D-glu, we sought to artificially evolve PG biosynthesis, leading to either replacement of D-glu in the PG peptide or alternative pathways to D-glu incorporation. We previously found that suppression of D-glu auxotrophy in a mutant of grown on lysogeny broth salts (LBS) medium was rare but could be accomplished by mutation of , with restoration of wild-type PG structure.

View Article and Find Full Text PDF

In this study, we used stable isotope labeling coupled with reversed-phase HPLC-MS to annotate the origin of metabolite features in Arabidopsis (Arabidopsis thaliana) (Columbia-0) seedling rosettes and stems. Using this strategy, a total of 1,240 metabolite features were shown to be derived from 15 amino acids, and these represented 10% to 30% of the total ion counts detected by untargeted LC-MS. The amino acid-derived metabolomes (AADMs) of rosettes and stems exhibited differing patterns of accumulation.

View Article and Find Full Text PDF