98%
921
2 minutes
20
AbstractPopulation response functions based on climatic and phenotypic data from common gardens have long been the gold standard for predicting quantitative trait variation in new environments. However, prediction accuracy might be enhanced by incorporating genomic information that captures the neutral and adaptive processes behind intrapopulation genetic variation. We used five clonal common gardens containing 34 provenances (523 genotypes) of maritime pine ( Aiton) to determine whether models combining climatic and genomic data capture the underlying drivers of height growth variation and thus improve predictions at large geographical scales. The plastic component explained most of the height growth variation, probably resulting from population responses to multiple environmental factors. The genetic component stemmed mainly from climate adaptation and the distinct demographic and selective histories of the different maritime pine gene pools. Models combining climate of origin and gene pool of the provenances as well as height-associated positive-effect alleles (PEAs) captured most of the genetic component of height growth and better predicted new provenances compared with the climate-based population response functions. Regionally selected PEAs were better predictors than globally selected PEAs, showing high predictive ability in some environments even when included alone in the models. These results are therefore promising for the future use of genome-based prediction of quantitative traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/720619 | DOI Listing |
Folia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFAquac Nutr
August 2025
College of Fisheries, Hunan Agricultural University, Changsha 410128, China.
An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
Background: Cervical vertebral maturation (CVM) is a skeletal maturity method that can be assessed routinely on whole spine radiographs to minimize radiation exposure. Originally used in orthodontics, its role in staging adolescent growth spurt and curve progression in adolescent idiopathic scoliosis (AIS) remains unclear. The aim of this study was to investigate growth rates across CVM stages, its cutoff for indicating peak growth (PG) versus growth cessation (GC), and its relationship with coronal curve progression.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Department of Agronomy, Purdue University, West Lafayette, Indiana, USA.
Understanding how interactive management practices and climatic behavior influence soybean [Glycine max (L.) Merr.] productivity is imperative to inform future production systems under changing climate.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, PR China. Electronic address:
This study presents a biopreservation method using sourdough co-fermented with Fructilactobacillus sanfranciscensis and Propionibacterium freudenreichii, optimizing conditions to 220 hydration and 24 h fermentation. The composite sourdough bread quality was evaluated through physicochemical, storage, sensory, and microbial tests, with mechanisms analyzed based on microstructure, rheology, and dough structure. Results showed that: first, the composite sourdough enhanced bread physicochemical properties, increasing volume, height-to-diameter ratio, elasticity, and resilience, while reducing baking loss, hardness, chewiness, and adhesiveness.
View Article and Find Full Text PDF