98%
921
2 minutes
20
Objectives: Brown adipose tissue (BAT) is important in the maintenance of cardiometabolic health in rodents. Recent reports appear to suggest the same in humans, although if this is true remains elusive partly because of the methodological bias that affected previous research. This cross-sectional work reports the relationships of cold-induced BAT volume, activity (peak standardized uptake, SUVpeak), and mean radiodensity (an inverse proxy of the triacylglycerols content) with the cardiometabolic and inflammatory profile of 131 young adults, and how these relationships are influenced by sex and body weight.
Design: This is a cross-sectional study.
Methods: Subjects underwent personalized cold exposure for 2 h to activate BAT, followed by static 18F-fluorodeoxyglucose PET-CT scanning to determine BAT variables. Information on cardiometabolic risk (CMR) and inflammatory markers was gathered, and a CMR score and fatty liver index (FLI) were calculated.
Results: In men, BAT volume was positively related to homocysteine and liver damage markers concentrations (independently of BMI and seasonality) and the FLI (all P ≤ 0.05). In men, BAT mean radiodensity was negatively related to the glucose and insulin concentrations, alanine aminotransferase activity, insulin resistance, total cholesterol/HDL-C, LDL-C/HDL-C, the CMR score, and the FLI (all P ≤ 0.02). In women, it was only negatively related to the FLI (P < 0.001). These associations were driven by the results for the overweight and obese subjects. No relationship was seen between BAT and inflammatory markers (P > 0.05).
Conclusions: A larger BAT volume and a lower BAT mean radiodensity are related to a higher CMR, especially in young men, which may support that BAT acts as a compensatory organ in states of metabolic disruption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/EJE-22-0130 | DOI Listing |
PeerJ
September 2025
Finnish Museum of Natural History, Helsinki, Finland.
Tympanal organs, crucial for anti-bat defence in moths and key for taxonomy, are often overlooked due to their fragility during dissection. Using micro-CT, we analyzed the tympanal organs of 19 geometrid species, comparing diurnal and nocturnal species to understand how predators, like bats and diurnal birds or lizards, influence tympanal morphology and its allometric relationship with body size. We hypothesized that diurnal moths, with reduced anti-bat function, would have smaller tympanal organs, irrespective of body size.
View Article and Find Full Text PDFTrials
August 2025
Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia.
Background: Obesity is a complex disease marked by excessive, dysfunctional adipose tissue accumulation. Recent research underscores the pivotal role of brown adipose tissue (BAT) in metabolic health and its potential as a therapeutic target for obesity management. Emerging preclinical and clinical evidence suggests that second-generation anti-obesity drugs, especially dual agonists such as tirzepatide, may enhance BAT activity.
View Article and Find Full Text PDFInt J Circumpolar Health
December 2025
Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
Brown adipose tissue (BAT) is essential for non-shivering thermogenesis, a key survival mechanism for Arctic populations exposed to chronic cold. As BAT dissipates energy as heat, it presents a potential target for improving cardiometabolic health and treating obesity. The Arctic Inuit represents a unique metabolic model due to distinct genetic and environmental adaptations.
View Article and Find Full Text PDFEJNMMI Res
August 2025
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Background: Recent advances in machine learning have revolutionized medical imaging. Currently, identifying brown adipose tissue (BAT) relies on manual identification and segmentation on Fluorine- fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) scans. However, the process is time-consuming, especially for studies involving a large number of cases, and is subject to bias due to observer dependency.
View Article and Find Full Text PDFMol Imaging Biol
August 2025
Department of Radiology, The University of Alabama at Birmingham, VH G082, 1670 University Blvd, Birmingham, AL, 35233, USA.
Introduction: Obesity and type 2 diabetes (T2D) influence the tumor microenvironment by altering glucose metabolism, which has been shown to decrease immune cell infiltration and activation. Positron emission tomography (PET) imaging provides a non-invasive method to detect molecular markers of immune populations in the tumor microenvironment and systemic organs. The goal of this study is to utilize advanced molecular imaging to quantify differences in innate and adaptive immune responses in diabetic obese mice systemically and within the tumor microenvironment.
View Article and Find Full Text PDF