Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prostate biopsy and image-guided treatment procedures are often performed under the guidance of ultrasound fused with magnetic resonance images (MRI). Accurate image fusion relies on accurate segmentation of the prostate on ultrasound images. Yet, the reduced signal-to-noise ratio and artifacts (e.g., speckle and shadowing) in ultrasound images limit the performance of automated prostate segmentation techniques and generalizing these methods to new image domains is inherently difficult. In this study, we address these challenges by introducing a novel 2.5D deep neural network for prostate segmentation on ultrasound images. Our approach addresses the limitations of transfer learning and finetuning methods (i.e., drop in performance on the original training data when the model weights are updated) by combining a supervised domain adaptation technique and a knowledge distillation loss. The knowledge distillation loss allows the preservation of previously learned knowledge and reduces the performance drop after model finetuning on new datasets. Furthermore, our approach relies on an attention module that considers model feature positioning information to improve the segmentation accuracy. We trained our model on 764 subjects from one institution and finetuned our model using only ten subjects from subsequent institutions. We analyzed the performance of our method on three large datasets encompassing 2067 subjects from three different institutions. Our method achieved an average Dice Similarity Coefficient (Dice) of 94.0±0.03 and Hausdorff Distance (HD95) of 2.28 mm in an independent set of subjects from the first institution. Moreover, our model generalized well in the studies from the other two institutions (Dice: 91.0±0.03; HD95: 3.7 mm and Dice: 82.0±0.03; HD95: 7.1 mm). We introduced an approach that successfully segmented the prostate on ultrasound images in a multi-center study, suggesting its clinical potential to facilitate the accurate fusion of ultrasound and MRI images to drive biopsy and image-guided treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161676PMC
http://dx.doi.org/10.1016/j.media.2022.102620DOI Listing

Publication Analysis

Top Keywords

ultrasound images
20
prostate segmentation
12
images multi-center
8
multi-center study
8
biopsy image-guided
8
prostate ultrasound
8
knowledge distillation
8
distillation loss
8
subjects institution
8
ultrasound
7

Similar Publications

Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.

View Article and Find Full Text PDF

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.

View Article and Find Full Text PDF