Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sugarcane is an important crop across the globe, and the rapid multiplication of excellent cultivars is an important object of the sugarcane industry. As one of the plant growth regulators, paclobutrazol (PBZ) has been frequently used in the tissue culture of sugarcane seedlings. However, little is known about the molecular mechanisms of response to PBZ in this crop. Here, we performed a comparative transcriptome analysis between sensitive (LC05-136) and non-sensitive (GGZ001) sugarcane cultivars treated by PBZ at three time points (0 d, 10 d, and 30 d) using RNA sequencing (RNA-Seq). The results showed that approximately 70.36 Mb of clean data for each sample were generated and assembled into 239,212 unigenes. A total of 6108 and 4404 differentially expressed genes (DEGs) were identified within the sensitive and non-sensitive sugarcane cultivars, respectively. Among them, DEGs in LC05-136 were most significantly enriched in the photosynthesis and valine, leucine and isoleucine degradation pathways, while in GGZ001, DEGs associated with ion channels and plant-pathogen interaction were mainly observed. Notably, many interesting genes, including those encoding putative regulators, key components of photosynthesis, amino acids degradation and glutamatergic synapse, were identified, revealing their importance in the response of sugarcane to PBZ. Furthermore, the expressions of sixteen selected DEGs were tested by quantitative reverse transcription PCR (RT-qPCR), confirming the reliability of the RNA-seq data used in this study. These results provide valuable information regarding the transcriptome changes in sugarcane treated by PBZ and provide an insight into understanding the molecular mechanisms underlying the resistance to PBZ in sugarcane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502373PMC
http://dx.doi.org/10.3390/plants11182417DOI Listing

Publication Analysis

Top Keywords

sugarcane cultivars
12
sugarcane
9
comparative transcriptome
8
transcriptome analysis
8
molecular mechanisms
8
treated pbz
8
pbz
6
analysis sugarcane
4
cultivars
4
cultivars response
4

Similar Publications

PP2C phosphatases regulate key physiological processes in plants, essential for growth, development, and stress responses. Sugarcane, a vital crop for many economies, faces severe abiotic stress, which negatively impacts production. Given the role of the PP2C gene family in stress tolerance and the recent publication of the genome sequence of the modern polyploid sugarcane cultivar R570, this study conducted genome-wide identification and characterization of the PP2C gene family in sugarcane.

View Article and Find Full Text PDF

The lack of a high-quality Ulmus parvifolia genome assembly has impeded research on disease resistance and hindered breeding programs for resilient elm cultivars. In this study, we presented a chromosome-level genome assembly of U. parvifolia using integrated sequencing technologies.

View Article and Find Full Text PDF

Metabolomic Variation in Sugarcane Maturation Under a Temperate Climate.

Metabolites

August 2025

Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan.

Background: Metabolomics is a powerful tool used for the evaluation of sugarcane components which are key factors influencing its response to biotic and abiotic stresses. However, little is known about the compositional variability and diversity of the sugarcane juice metabolome under practical field conditions in temperate climates.

Methods: In this study, we characterized metabolomic differences and variability in sugarcane juice components during the maturation stage of nine cultivars grown in a temperate climate in Japan using a nuclear magnetic resonance-based metabolomics approach, aiming to provide insights into genotype-dependent adaptability to environmental and climate changes.

View Article and Find Full Text PDF

Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium subsp. (), is among the most economically significant diseases of sugarcane worldwide.

View Article and Find Full Text PDF

Potato ( L.), a member of the Solanaceae family, is a staple crop with vital importance for global food security. Various biotic and abiotic stresses affect potato crops in the field as well as in post-harvest conditions.

View Article and Find Full Text PDF