98%
921
2 minutes
20
The constant increment in the world's population leads to a parallel increase in the demand for food. This situation gives place the need for urgent development of alternative and sustainable resources to satisfy this nutritional requirement. Human nutrition is currently based on fisheries, which accounts for 50% of the fish production for human consumption, but also on agriculture, livestock, and aquaculture. Among them, aquaculture has been pointed out as a promising source of animal protein that can provide the population with high-quality protein food. This productive model has also gained attention due to its fast development. However, several aquaculture species require considerable amounts of fish protein to reach optimal growth rates, which represents its main drawback. Aquaculture needs to become sustainable using renewable source of nutrients with high contents of proteins to ensure properly fed animals. To achieve this goal, different approaches have been considered. In this sense, single-cell protein (SCP) products are a promising solution to replace fish protein from fishmeal. SCP flours based on microbes or algae biomass can be sustainably obtained. These microorganisms can be cultured by using residues supplied by other industries such as agriculture, food, or urban areas. Hence, the application of SCP for developing innovative fish meal offers a double solution by reducing the management of residues and by providing a sustainable source of proteins to aquaculture. However, the use of SCP as aquaculture feed also has some limitations, such as problems of digestibility, presence of toxins, or difficulty to scale-up the production process. In this work, we review the potential sources of SCP, their respective production processes, and their implementation in circular economy strategies, through the revalorization and exploitation of different residues for aquaculture feeding purposes. The data analyzed show the positive effects of SCP inclusion in diets and point to SCP meals as a sustainable feed system. However, new processes need to be exploited to improve yield. In that direction, the circular economy is a potential alternative to produce SCP at any time of the year and from various cost-free substrates, almost without a negative impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497958 | PMC |
http://dx.doi.org/10.3390/foods11182831 | DOI Listing |
Macromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Materials Science and Engineering, Jilin University of Chemical Technology Jilin 132022 PR China
To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.
View Article and Find Full Text PDFResour Conserv Recycl Adv
September 2025
Institute for Environmental Studies, VU Amsterdam, De Boelelaan 1111, 1091 HV Amsterdam, the Netherlands.
Shifting towards a circular economy in the built environment is considered an important step toward fostering environmentally sustainable and socially resilient cities. Housing cooperatives, established to provide affordable and democratically governed housing, may offer structural advantages for embedding circularity - but their role in circular transitions remains underexplored. This study investigates how cooperative governance may influence the implementation of circular strategies, including circular design, product-service systems, and shared resource models, across different housing types.
View Article and Find Full Text PDFFood Chem X
August 2025
Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Vegetable side streams are resulting non-edible by-products from vegetable processing. These side streams are a rich source of bioactive compounds and macromolecules. Despite their potential for high-value applications, these materials are frequently used in low-value applications or discarded, contributing to resource depletion and environmental concerns.
View Article and Find Full Text PDF