Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The achievement of highly efficient power conversion efficiency (PCE) is a big concern for non-fullerene organic solar cells (NF-OSCs) because PCE can depend on numerous variables. Here, new five novel acceptor molecules without fullerenes were developed and investigated using DFT (density functional theory) and TD-DFT (time dependent-density functional theory). Compared to the recently synthesized molecule (PZ-dIDTC6), the developed molecules display a narrow optical band gap, exhibiting a red shift in the absorption spectrum. The developed molecules (YM1-YM5) express high mobility of electrons and holes in the active layer of OSCs (organic solar cells). In addition, high open-circuit voltage (V) values with maximum charge density shifting are noted in designed molecules. YM1-YM5 is also associated with low binding energy and excitation energy. This work proves that noncovalent conformational locking is favourable for improving PCE devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121844DOI Listing

Publication Analysis

Top Keywords

acceptor molecules
8
power conversion
8
conversion efficiency
8
organic solar
8
solar cells
8
functional theory
8
developed molecules
8
molecules ym1-ym5
8
molecules
5
designing efficient
4

Similar Publications

Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Computer simulations play an essential role in the interpretation of experimental multiphoton absorption spectra. In addition, models derived from theory allow for the establishment of "structure-property" relationships. This work contributes to these efforts and presents the results of an analysis of two- and three-photon absorptions for a set comprising 450 conjugated molecules performed at the CAM-B3LYP/aug-cc-pVDZ level.

View Article and Find Full Text PDF

Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.

View Article and Find Full Text PDF