98%
921
2 minutes
20
Luminogens characteristic of aggregation-induced emission (AIEgens) have been extensively exploited for the development of imaging-guided photodynamic therapeutic (PDT) agents. However, intramolecular rotation of donor-acceptor (D-A) type AIEgens favors non-radiative decay of photonic energy which results in unsatisfactory fluorescence quantum and singlet oxygen yields. To address this issue, we developed several molecularly engineered AIEgens with partially "locked" molecular structures enhancing both fluorescence emission and the production of triplet excitons. A triphenylphosphine group was introduced to form a D-A conjugate, improving water solubility and the capacity for mitochondrial localization of the resulting probes. Experimental and theoretical analyses suggest that the much higher quantum and singlet oxygen yield of a structurally "significantly-locked" probe (LOCK-2) than its "partially locked" (LOCK-1) and "unlocked" equivalent (LOCK-0) is a result of suppressed AIE and twisted intramolecular charge transfer. LOCK-2 was also used for the mitochondrial-targeting, fluorescence image-guided PDT of liver cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384827 | PMC |
http://dx.doi.org/10.1039/d2sc00889k | DOI Listing |
Anal Chem
September 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.
View Article and Find Full Text PDFSmall
September 2025
Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:
Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.
View Article and Find Full Text PDFInt J Surg
September 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.
The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.
View Article and Find Full Text PDF