Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemic heart disease represent a heavy burden for the medical systems irrespective of the methods used for diagnosis and treatment of such patients in the daily medical routine. The present paper depicts the protocol of a study whose main aim is to develop, implement and test an artificial intelligence algorithm and cloud based platform for fully automated PCI guidance using coronary angiography images. We propose the utilisation of multiple artificial intelligence based models to produce three-dimensional coronary anatomy reconstruction and assess function- post-PCI FFR computation- for developing an extensive report describing and motivating the optimal PCI strategy selection. All the relevant artificial intelligence model outputs (anatomical and functional assessment-pre- and post-PCI) are presented to the clinician via a cloud platform, who can then take the utmost treatment decision. The physician will be provided with multiple scenarios and treatment possibilities for the same case allowing a real-time evaluation of the most appropriate PCI strategy planning and follow-up. The artificial intelligence algorithms and cloud based PCI selection workflow will be verified and validated in a pilot clinical study including subjects prospectively to compare the artificial intelligence services and results against annotations and invasive measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462679PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274296PLOS

Publication Analysis

Top Keywords

artificial intelligence
24
cloud based
12
based platform
8
platform fully
8
fully automated
8
automated pci
8
pci guidance
8
guidance coronary
8
pci strategy
8
artificial
6

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.

View Article and Find Full Text PDF

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF