Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The surveillance of vector mosquitoes is essential for prevention and control of mosquito-borne diseases. In this study, we developed an internet-based vector mosquito monitor, MS-300, and evaluated its efficiency for the capture of the important vector mosquitoes, Aedes albopictus and Culex quinquefasciatus, in laboratory and field trials.

Methodology/principal Findings: The linear sizes of adult Ae. albopictus and Cx. quinquefasciatus were measured and an infrared window was designed based on these data. A device to specifically attract these two species and automatically transmit the number of captured mosquitoes to the internet was developed. The efficiency of the device in capturing the two species was tested in laboratory, semi-field and open field trials. The efficiency results for MS-300 for catching and identifying Ae. albopictus in laboratory mosquito-net cages were 98.5% and 99.3%, and 95.8% and 98.6%, respectively, for Cx. quinquefasciatus. In a wire-gauze screened house in semi-field trials, the efficiencies of MS-300 baited with a lure in catching Ae. albopictus and Cx. quinquefasciatus were 54.2% and 51.3%, respectively, which were significantly higher than 4% and 4.2% without the lure. The real-time monitoring data revealed two daily activity peaks for Ae. albopictus (8:00-10:00 and 17:00-19:00), and one peak for Cx. quinquefasciatus (20:00-24:00). During a 98-day surveillance trial in the field, totals of 1,118 Ae. albopictus and 2,302 Cx. quinquefasciatus were captured by MS-300. There is a close correlation between the number of captured mosquitoes and the temperature in the field, and a positive correlation in the species composition of the captured samples among the mosquitoes using MS-300, BioGents Sentinel traps and human landing catches.

Conclusions/significance: The data support the conclusion that MS-300 can specifically and efficiently capture Ae. albopictus and Cx. quinquefasciatus, and monitor their density automatically in real-time. Therefore, MS-300 has potential for use as a surveillance tool for prevention and control of vector mosquitoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455839PMC
http://dx.doi.org/10.1371/journal.pntd.0010701DOI Listing

Publication Analysis

Top Keywords

vector mosquitoes
16
albopictus quinquefasciatus
12
real-time monitoring
8
mosquitoes aedes
8
albopictus
8
aedes albopictus
8
albopictus culex
8
quinquefasciatus
8
culex quinquefasciatus
8
prevention control
8

Similar Publications

The role of Denisovan paleohabitats in shaping modern human genetic resistance to viral, bacterial, and parasitic infections.

J Hum Evol

September 2025

Sustainability Solutions Research Lab, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary. Electronic address:

Denisovans contributed notably to the genomes of present-day East and Southeast Asians. However, the relationship between the inhabited paleohabitats and the adaptive genetic traits related to infections in modern humans remains underexplored. This study uses geospatial techniques to analyze climatic factors associated with three Denisovan archaeological sites linked to nine specimens.

View Article and Find Full Text PDF

, the primary malaria vector in Ethiopia, exhibits diverse feeding behaviors influenced by geography, climate, and control strategies. Understanding its blood-feeding preference is crucial for devising effective interventions. This study aimed to conduct a systematic review and meta-analysis of existing evidence on human blood index (HBI) in Ethiopia.

View Article and Find Full Text PDF

A review of Leishmania infections in American Phlebotomine sand flies - Are those that transmit leishmaniasis anthropophilic or anthropportunists?★.

Parasite

September 2025

Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.

Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.

View Article and Find Full Text PDF

Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) causes mild to severe disease in livestock and humans. It was first identified in 1931 during an epizootic in Kenya and has spread across Africa and into the Middle East. Hematopoietic cells are one of the major targets of RVFV ; however, their contribution to RVFV pathogenesis remains poorly understood.

View Article and Find Full Text PDF