98%
921
2 minutes
20
Single-atom catalysts (SACs) based on graphene derivatives are an emerging and growing class of materials functioning as two-dimensional (2D) metal-coordination scaffolds with intriguing properties. Recently, owing to the rich chemistry of fluorographene, new avenues have opened toward graphene derivatives with selective, spacer-free, and dense functionalization, acting as in-plane or out-of-plane metal coordination ligands. The particular structural features give rise to intriguing phenomena occurring between the coordinated metals and the graphene backbone. These include redox processes, charge transfer, emergence, and stabilization of rare or otherwise unstable metal valence states, as well as metal-support and metal-metal synergism. The vast potential of such systems has been demonstrated as enzyme mimics for cooperative mixed-valence SACs, ethanol fuel cells, and CO fixation; however, it is anticipated that their impact will further expand toward diverse fields, , advanced organic transformations, electrochemical energy storage, and energy harvesting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520671 | PMC |
http://dx.doi.org/10.1039/d2nr03453k | DOI Listing |
Chem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.
Graphene oxide and its derivatives have unique physical and chemical properties with applications in many different fields. However, their biological effects and mechanisms of intracellular toxicity have not been completely clarified. In this study, we investigated the cytotoxic and autophagic activities of graphene oxide and its derivatives in A549 human lung carcinoma cells.
View Article and Find Full Text PDFChem Rec
September 2025
Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFChem Rec
September 2025
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.
The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.
View Article and Find Full Text PDF