Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detection of Sn ions in environmental and biological samples is essential owing to the toxicological risk posed by excess use tin worldwide. Herein, we have designed a nanoprobe involving upconversion nanophosphors linked with a rhodamine-based fluorophore, which is selectively sensitive to the presence of Sn ions. Upon excitation with near-infrared (NIR) light, the green emission of the nanophosphor is reabsorbed by the fluorophore with an efficiency that varies directly with the concentration of the Sn ions. We have explored this NIR-excited fluorescence resonance energy transfer (FRET) process for the quantitative and ratiometric detection of Sn ions in an aqueous phase. We have observed an excellent linear correlation between the ratiometric emission signal variation and the Sn ion concentration in the lower micromolar range. The detection limit of Sn ions observed using our FRET-based nanoprobe is about 10 times lower than that observed using other colorimetric or fluorescence-based techniques. Due to the minimal autofluorescence and great penetration depth of NIR light, this method is ideally suited for the selective and ultrasensitive detection of Sn ions in complex biological or environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434793PMC
http://dx.doi.org/10.1021/acsomega.2c02671DOI Listing

Publication Analysis

Top Keywords

detection ions
16
ratiometric detection
8
upconversion nanophosphors
8
nir light
8
ions
7
detection
5
highly selective
4
selective sensitive
4
sensitive ratiometric
4
ions nir-excited
4

Similar Publications

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

In charge detection mass spectrometry (CD-MS) ions are trapped in an electrostatic linear ion trap (ELIT) where they oscillate back and forth through a conducting cylinder. The oscillating ions induce a periodic charge separation that is detected by a charge sensitive amplifier (CSA) connected to the cylinder. The resulting time domain signal is analyzed using short-time Fourier transforms to give the mass-to-charge ratio and charge for each ion, which are then multiplied to give the mass.

View Article and Find Full Text PDF

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Recent Progress in Peptide-Based Fluorescent Probes Biomedical Applications: A Review.

Int J Nanomedicine

September 2025

Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Peptide-based fluorescent probes have found widespread applications in biomedical research, including bio-imaging, disease diagnosis, drug discovery, and image-guided surgery. Their favorable properties-such as small molecular size, low toxicity, minimal immunogenicity, and high targeting specificity-have contributed to their growing utility in both basic research and translational medicine. This review provides a comprehensive overview of recent advances in peptide-based fluorescent probes, emphasizing design strategies, biological targets, and diverse functional applications.

View Article and Find Full Text PDF