Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human spermatogenesis requires an orchestrated expression of numerous genes in various germ cell subtypes. Therefore, the genetic landscape of male infertility is highly complex. Known genetic factors alone account for at least 15% of male infertility. However, ~40% of infertile men remain undiagnosed and are classified as idiopathic infertile men. We performed exome sequencing in 47 idiopathic infertile men (discovery cohort), followed by replication study (40 variants in 33 genes) in 844 infertile men and 709 controls using Sequenom MassARRAY® based genotyping. We report 17 variants in twelve genes that comprise both previously reported (DNAH8, DNAH17, FISP2 and SPEF2) and novel candidate genes (BRDT, CETN1, CATSPERD, GMCL1, SPATA6, TSSK4, TSKS and ZNF318) for male infertility. The latter have a strong biological nexus to human spermatogenesis and their respective mouse knockouts are concordant with human phenotypes. One candidate gene CETN1, identified in this study, was sequenced in another independent cohort of 840 infertile and 689 fertile men. Further, CETN1 variants were functionally characterized using biophysical and cell biology approaches. We demonstrate that CETN1 variant- p.Met72Thr leads to multipolar cells, fragmented nuclei during mitosis leading to cell death and show significantly perturbed ciliary disassembly dynamics. Whereas CETN1-5' UTR variant; rs367716858 leads to loss of a methylation site and increased reporter gene expression in vitro. We report a total of eight novel candidate genes identified by exome sequencing, which may have diagnostic relevance and can contribute to improved diagnostic workup and clinical management of male infertility.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddac216DOI Listing

Publication Analysis

Top Keywords

male infertility
16
infertile men
16
exome sequencing
12
cetn1 variants
8
human spermatogenesis
8
idiopathic infertile
8
novel candidate
8
candidate genes
8
cetn1
5
male
5

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.

View Article and Find Full Text PDF

Background: Drug-induced hypogonadism is an underrecognized but significant adverse effect of various medications, contributing to male sexual dysfunction and infertility. Despite its clinical significance, comprehensive studies systematically identifying high-risk drugs remain limited.

Objectives: This study aimed to investigate the potential drugs associated with hypogonadism from FDA Adverse Event Reporting System.

View Article and Find Full Text PDF

Zona pellucida glycoprotein-1 (ZP1) is essential for maintaining oocyte structural integrity and facilitating fertilization. Mutations in are strongly associated with primary infertility disorders such as fertilization failure and empty follicle syndrome; however, the absence of accurate experimental models has hindered mechanistic understanding and obscured the etiological basis of -related infertility. In this study, CRISPR/Cas9-mediated genome editing was employed to generate two -edited cynomolgus macaques ( ), designated #ZP1-1 (male) and #ZP1-2 (female).

View Article and Find Full Text PDF

Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.

View Article and Find Full Text PDF