98%
921
2 minutes
20
Background: In recent years, using hydroxyapatite nanoparticles (HANPs) for tumor therapy attracted increasing attention because HANPs were found to selectively suppress the growth of tumor cells but exhibit ignorable toxicity to normal cells.
Purpose: This study aimed to investigate the capacities of HANPs with different morphologies and particle sizes against two kinds of osteosarcoma (OS) cells, human OS 143B cells and rat OS UMR106 cells.
Methods: Six kinds of HANPs with different morphologies and particle sizes were prepared by wet chemical method. Then, the antitumor effect of these nanoparticles was characterized by means of in vitro cell experiments and in vivo tumor-bearing mice model. The underlying antitumor mechanism involving mitochondrial apoptosis was also investigated by analysis of intracellular calcium, expression of apoptosis-related genes, reactive oxygen species (ROS), and the endocytosis efficiency of the particles in tumor cells.
Results: Both in vitro cell experiments and in vivo mice model evaluation revealed the anti-OS performance of HANPs depended on the concentration, morphology, and particle size of the nanoparticles, as well as the OS cell lines. Among the six HANPs, rod-like HANPs (R-HANPs) showed the best inhibitory activity on 143B cells, while needle-like HANPs (N-HANPs) inhibited the growth of UMR106 cells most efficiently. We further demonstrated that HANPs induced mitochondrial apoptosis by selectively raising intracellular Ca and the gene expression levels of mitochondrial apoptosis-related molecules, and depolarizing mitochondrial membrane potential in tumor cells but not in MC3T3-E1, a mouse pre-osteoblast line. Additionally, the anti-OS activity of HANPs also linked with the endocytosis efficiency of the particles in the tumor cells, and their ability to drive oxidative damage and immunogenic cell death (ICD).
Conclusion: The current study provides an effective strategy for OS therapy where the effectiveness was associated with the particle morphology and cell line.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423115 | PMC |
http://dx.doi.org/10.2147/IJN.S375950 | DOI Listing |
Cell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
September 2025
Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy
The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Molecular and Translational Medicine, University of Brescia 25123 Brescia, Italy. Electronic address:
Ribonucleotide reductase (RR) is the rate-limiting enzyme for NTPs conversion into dNTPs, playing a central role in genome replication and maintenance. It is composed by two catalytic (RRM1) and two regulatory (alternatively RRM2 and p53R2) subunits, of which RRM2's functionality depends on a diferric center in the active site and is one of the most expressed genes in many tumors, among which Rhabdomyosarcoma (RMS), a rare and aggressive pediatric tumor. Didox (3,4-dihydroxy-benzohydroxamic acid) is a highly effective RRM2 inhibitor with iron chelating properties which shows fewer in vivo side effects than classical RR inhibitors.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:
The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
The Second Department of Gastroenterology, Shengjing Hospital of China Medical University, No. 36, Sanhao Road, Heping District, Shenyang 110000, Liaoning, China. Electronic address:
Purpose: This study aimed to elaborate the mechanism of cuproptosis induced by HO in ulcerative colitis (UC).
Methods: Bioinformatics based on GSE107499, GSE87466, and GSE92415 datasets was performed to screen hub genes related to cuproptosis. In vitro, cell counting kit 8 (CCK8), flow cytometry were applied for detecting cell proliferation and apoptosis.