98%
921
2 minutes
20
Genome-scale functional screening accelerates comprehensive assessment of gene function in cells. Here, we have established a genome-scale loss-of-function screening strategy that combined a cytosine base editor with approximately 12,000 parallel sgRNAs targeting 98.1% of total genes in ATCC 13032. Unlike previous data processing methods developed in yeast or mammalian cells, we developed a new data processing procedure to locate candidate genes by statistical sgRNA enrichment analysis. Known and novel functional genes related to 5-fluorouracil resistance, 5-fluoroorotate resistance, oxidative stress tolerance, or furfural tolerance have been identified. In particular, and were proven to be related to the furfural tolerance in . A cloud platform named FSsgRNA-Analyzer was provided to accelerate sequencing data processing for CRISPR-based functional screening. Our method would be broadly useful to functional genomics study and strain engineering in other microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432829 | PMC |
http://dx.doi.org/10.1126/sciadv.abq2157 | DOI Listing |
J Alzheimers Dis
September 2025
Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Roma, Italy.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.
View Article and Find Full Text PDFBackground: People with dementia who have a fall can experience both physical and psychological effects, often leading to diminished independence. Falls impose economic costs on the healthcare system. Despite elevated fall risks in dementia populations, evidence supporting effective home-based interventions remains limited.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFCereb Cortex
August 2025
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.
View Article and Find Full Text PDFCereb Cortex
August 2025
The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), 2006 Xiyuan Avenue, West Hi Tech Zone, 611731, Chengdu, China.
This commentary reflects three decades of interaction between the Cuban neuroinformatics tradition and the statistical parametric mapping (SPM) framework. From the early development of neurometrics in Cuba to global initiatives like the Global Brain Consortium, our trajectory has paralleled and intersected with that of SPM. We highlight shared commitments to generative modeling, Bayesian inference, and population-level brain mapping, as shaped through collaborations, workshops, and joint theoretical work with Karl Friston and his group.
View Article and Find Full Text PDF