A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lubricant-entrenched slippery surface-based nanocarriers to avoid macrophage uptake and improve drug utilization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Reducing the protein adsorption of nanoparticles (NPs) as drug carriers to slow their rapid clearance by macrophages uptake is a critical challenge for NPs clinical translational applications. Despite extensive research efforts to inhibit cellular uptake, including covering biological agents or surface chemical coatings to impart "stealth" properties to NPs, their stability remains insufficient.

Objectives: Developed a novel surface modification technology based on a physical infusion engineering approach to achieve persistent inhibition of protein adhesion and cellular uptake by nanocarriers.

Methods: The nanoparticles were prepared based on conventional drug carrier mesoporous silica NPs through a two-step process. A functional nanoscale slippery surface was formed by grafting "liquid-like" brushes on the particles surface, and then a lubricant-entrenched slippery surfaces (LESS) was formed by infusing silicone oil lubricant into the entire surface. Co-incubation with macrophages (in vitro and in vivo) was used to examine the anti-uptake properties of modified NPs. The anti-adhesion properties of LESS coating surfaces to various liquids, proteins and cells were used to analyze the anti-uptake mechanism. Loaded with drugs, combined with tumor models, to evaluate the drug utilization of modified NPs.

Results: Relying on the stable and slippery LESS coating, the modified surface could prevent the adhesion of various liquids and effectively shield against the adhesion of proteins and cells, as well as remarkably reduce macrophage cellular uptake in vitro and in vivo. In addition, the LESS coating does not affect cell activity and allows NPs to be loaded with drugs, significantly improving the utilization of drugs in vitro and in vivo. This allows the NPs to reach to the target tumor site for drug delivery without active clearance by macrophages.

Conclusion: Our research introduces a new nanocarrier technology to improve anti-biofouling performance and stealth efficiency that will facilitate the development of nanomedicines for clinical transformation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248789PMC
http://dx.doi.org/10.1016/j.jare.2022.08.015DOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
vitro vivo
12
lubricant-entrenched slippery
8
drug utilization
8
proteins cells
8
loaded drugs
8
allows nps
8
nps
7
surface
6
uptake
5

Similar Publications