98%
921
2 minutes
20
The rise of machine learning (ML) has recently buttressed the efforts for big data-driven precision oncology. This study used ensemble ML for precision oncology in breast cancer, which is one of the most common malignancies worldwide with marked heterogeneity of the underlying molecular mechanisms. We analyzed clinical and RNA-seq data from The Cancer Genome Atlas (TCGA) (844 patients with breast cancer and 113 healthy individuals) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (1784 patients with breast cancer and 202 healthy individuals). We evaluated six algorithms in the context of ensemble modeling and identified a candidate mRNA diagnostic panel that can differentiate patients from healthy controls, and stratify breast cancer into molecular subtypes. The ensemble model included 50 mRNAs and displayed 82.55% accuracy, 79.22% specificity, and 84.55% sensitivity in stratifying patients into molecular subtypes in TCGA cohort. Its performance was markedly higher, however, in distinguishing the basal, LumB, and Her2+ breast cancer subtypes from healthy individuals. In overall survival analysis, the mRNA panel showed a hazard ratio of 2.25 ( = 5 × 10) for breast cancer and was significantly associated with molecular pathways related to carcinogenesis. In conclusion, an ensemble ML approach, including 50 mRNAs, was able to stratify patients with different breast cancer subtypes and differentiate them from healthy individuals. Future prospective studies in large samples with deep phenotyping can help advance the ensemble ML approaches in breast cancer. Advanced ML methods such as ensemble learning are timely additions to the precision oncology research toolbox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/omi.2022.0089 | DOI Listing |
Mol Cancer Ther
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, United States.
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.
View Article and Find Full Text PDFJ Med Chem
September 2025
Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.
View Article and Find Full Text PDFJ Am Acad Audiol
September 2025
Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder caused by tumor-mediated antibodies targeting the cerebellum, often leading to irreversible cerebellar damage. The most common antibody implicated in PCD is anti-Purkinje cell cytoplasmic antibody type-1, associated with malignancies such as breast, gynecological, and lung cancers. Symptoms often include dizziness, imbalance, progressive ataxia, and other cerebellar signs/symptoms, but early presentations may mimic acute vestibular syndrome, thus complicating diagnosis.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.