98%
921
2 minutes
20
The novel wheat powdery mildew and stripe rust resistance genes Pm5V/Yr5V are introgressed from Dasypyrum villosum and fine mapped to a narrowed region in 5VS, and their effects on yield-related traits were characterized. The powdery mildew and stripe rust seriously threaten wheat production worldwide. Dasypyrum villosum (2n = 2x = 14, VV), a relative of wheat, is a valuable resource of resistance genes for wheat improvement. Here, we describe a platform for rapid introgression of the resistance genes from D. villosum into the wheat D genome. A complete set of new wheat-D. villosum V (D) disomic substitution lines and 11 D/V Robertsonian translocation lines are developed and characterized by molecular cytogenetic method. A new T5DL·5V#5S line NAU1908 shows resistance to both powdery mildew and stripe rust, and the resistances associated with 5VS are confirmed to be conferred by seedling resistance gene Pm5V and adult-plant resistance gene Yr5V, respectively. We flow-sort chromosome arm 5VS and sequence it using the Illumina NovaSeq 6000 system that allows us to generate 5VS-specific markers for genetic mapping of Pm5V/Yr5V. Fine mapping shows that Pm5V and Yr5V are closely linked and the location is narrowed to an approximately 0.9 Mb region referencing the sequence of Chinese Spring 5DS. In this region, a NLR gene in scaffold 24,874 of 5VS orthologous to TraesCS5D02G044300 is the most likely candidate gene for Pm5V. Soft- and hard-grained T5DL·5V#5S introgressions confer resistance to both powdery mildew and stripe rust in diverse wheat genetic backgrounds without yield penalty. Meanwhile, significant decrease in plant height and increase in yield were observed in NIL-5DL·5V#5S compared with that in NIL-5DL·5DS. These results indicate that Pm5V/Yr5V lines might have the potential value to facilitate wheat breeding for disease resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-022-04206-9 | DOI Listing |
Annu Rev Phytopathol
September 2025
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA;
Recessive mutations in the mildew locus O () gene were first identified as key factors conferring broad-spectrum resistance to powdery mildew in barley. This discovery inspired extensive research on MLOs and novel breeding strategies for powdery mildew resistance by targeting genes in various crops. Over the past two decades, studies have revealed broader roles for MLOs beyond powdery mildew susceptibility, including regulating interactions with diverse pathogens and symbionts, root thigmomorphogenesis, and reproductive development.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
Introduction: Grapevine is highly susceptible to fungal diseases such as downy mildew and powdery mildew, which are traditionally managed through the intensive use of chemical fungicides. However, in the context of increasingly sustainable viticulture, biofungicides derived from plant and yeast extracts are gaining attention. Despite this, their impact on the grapevine leaf microbiome, crucial for plant health and disease resilience, remains underexplored.
View Article and Find Full Text PDFMol Plant Microbe Interact
September 2025
University of Zurich, Deparment of Plant and Microbial Biology, Zürich, ZH, Switzerland;
To successfully colonize the living tissue of its host, the fungal wheat powdery mildew pathogen produces diverse effector proteins that are suggested to reprogram host defense responses and physiology. When recognized by host immune receptors, these proteins become avirulence (AVR) effectors. Several sequence-diverse AVRPM3 effectors and the suppressor of AVRPM3-PM3 recognition (SVRPM3) are involved in triggering allele-specific, -mediated resistance, but the molecular mechanisms controlling their function in the host cell remain unknown.
View Article and Find Full Text PDFPlant Genome
September 2025
Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
Ascochyta blight of lentil (Lens culinaris Medik.) is a fungal disease caused by Ascochyta lentis. This study was carried out to identify the location of quantitative trait loci (QTL) associated with resistance from the accession Indianhead, and how these vary between the recently identified pathotypes of A.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. Electronic address:
Powdery mildew (PM) is one of the most serious diseases in balsam pear. MLO (Mildew Resistance Locus O) is a key factor in the response of plants to PM infection, but its regulation mechanism remains poorly understood. In this study, overexpression of McMLO7b (MLO7b in Momordica charantia L) was found to potentially enhance Arabidopsis susceptibility to PM, confirming that McMLO7b acts as a susceptibility factor during PM infection.
View Article and Find Full Text PDF