Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical trials.

Design: Cross-sectional study.

Participants: Glaucoma patients with good quality macula and ONH scans enrolled in 2 longitudinal studies, the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study.

Methods: Spectralis macula posterior pole scans and ONH circle scans on 3327 pairs of GCIPL/RNFL scans from 1096 eyes (550 patients) were included. Participants were randomly distributed into a training and validation dataset (90%) and a test dataset (10%) by participant. Networks had access to GCIPL and RNFL data from one hemiretina of the probe eye and all data of the fellow eye. The models were then trained to predict the GCIPL or RNFL thickness of the remaining probe eye hemiretina.

Main Outcome Measures: Mean absolute error (MAE) and squared Pearson correlation coefficient (r) were used to evaluate model performance.

Results: The deep learning model was able to predict superior and inferior GCIPL thicknesses with a global r value of 0.90 and 0.86, r of mean of 0.90 and 0.86, and mean MAE of 3.72 μm and 4.2 μm, respectively. For superior and inferior RNFL thickness predictions, model performance was slightly lower, with a global r of 0.75 and 0.84, r of mean of 0.81 and 0.82, and MAE of 9.31 μm and 8.57 μm, respectively. There was only a modest decrease in model performance when predicting GCIPL and RNFL in more severe disease. Using individualized hemiretinal predictions to account for variability across patients, we estimate that a clinical trial can detect a difference equivalent to a 25% treatment effect over 24 months with an 11-fold reduction in the number of patients compared to a conventional trial.

Conclusions: Our deep learning models were able to accurately estimate both macula GCIPL and ONH RNFL hemiretinal thickness. Using an internal control based on these model predictions may help reduce clinical trial sample size requirements and facilitate investigation of new glaucoma neuroprotection therapies.

Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ogla.2022.08.014DOI Listing

Publication Analysis

Top Keywords

deep learning
16
clinical trial
12
rnfl thickness
12
gcipl rnfl
12
glaucoma neuroprotection
8
probe eye
8
superior inferior
8
090 086
8
model performance
8
glaucoma
6

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Clinical evaluation of motion robust reconstruction using deep learning in lung CT.

Phys Eng Sci Med

September 2025

Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.

In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF