Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung cancer is, currently, one of the main malignancies causing deaths worldwide. To date, early prognostic and diagnostic markers for small cell lung cancer (SCLC) have not been systematically and clearly identified, so most patients receive standard treatment. In the present study, we combine quantitative proteomics studies and the use of magnetic core-shell nanoparticles (mCSNP's), first to identify a marker for lung cancer, and second to functionalize the nanoparticles and their possible application for early and timely diagnosis of this and other types of cancer. In the present study, we used label-free mass spectrometry in combination with an ion-mobility approach to identify 220 proteins with increased abundance in small cell lung cancer (SCLC) cell lines. Our attention was focused on cell receptors for their potential application as mCSNP's targets; in this work, we report the overexpression of Transferrin Receptor (TfR1) protein, also known as Cluster of Differentiation 71 (CD71) up to a 30-fold increase with respect to the control cell. The kinetics of endocytosis, evaluated by a flow cytometry methodology based on fluorescence quantification, demonstrated that receptors were properly activated with the transferrin supported on the magnetic core-shell nanoparticles. Our results are important in obtaining essential information for monitoring the disease and/or choosing better treatments, and this finding will pave the way for future synthesis of nanoparticles including chemotherapeutic drugs for lung cancer treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413248PMC
http://dx.doi.org/10.3390/pharmaceutics14081715DOI Listing

Publication Analysis

Top Keywords

lung cancer
28
core-shell nanoparticles
12
small cell
12
cell lung
12
cancer sclc
12
transferrin receptor
8
receptor tfr1
8
cancer
8
magnetic core-shell
8
lung
7

Similar Publications

Concomitant Comedications and Survival With First-Line Pembrolizumab in Advanced Non-Small-Cell Lung Cancer.

JAMA Netw Open

September 2025

Oncostat U1018, Institut National de la Santé et de la Recherche Médicale (INSERM), Ligue Contre le Cancer, Paris-Saclay University, Villejuif, France.

Importance: Antibiotics, steroids, and proton pump inhibitors (PPIs) are suspected to decrease the efficacy of immunotherapy.

Objective: To explore the association of comedications with overall survival (OS) in patients with advanced non-small-cell lung cancer (NSCLC).

Design, Setting, And Participants: This nationwide retrospective cohort study used target trial emulations of patients newly diagnosed with NSCLC from January 2015 to December 2022, identified from the French national health care database.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Background: Lung cancer (LC) is the leading cause of cancer-related deaths globally. Genetic variants in mismatch repair (MMR) genes, such as MutS homolog 2 (MSH2), MutS homolog 6 (MSH6) and MutL homolog 1 (MLH1), may influence individual susceptibility and clinical outcomes in LC.

Objective: This study investigated the associations of genetic polymorphisms in MSH2, MSH6, and MLH1 with susceptibility and survival outcomes in lung cancer patients in the Guangxi Zhuang population.

View Article and Find Full Text PDF

Introduction: Pancreatic adenocarcinomas (PDAC) have a poor prognosis, with a 5-year relative Survival rate of 11.5%. Only 20% of patients are initially eligible for resection, and 50% of patients presented with metastatic disease, currently only candidates' palliative treatment.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF