98%
921
2 minutes
20
The differential involvement of the macrophage activation phenotypes (M1 vs. M2) has been linked to disease severity in various chronic inflammatory disorders. Pharmacologic manipulation of the M1/M2 macrophage polarization has shown therapeutic potential. Cholesteatoma is a destructive chronic middle ear disease with potentially life-threatening complications. The distribution of macrophage polarization phenotypes in middle ear cholesteatoma has not been described. In the present study, human cholesteatoma specimens acquired during tympanomastoidectomy were retrospectively retrieved and immunohistochemically characterized using a combination of antibodies labeling M1 macrophages (CD80), M2 macrophages (CD163), and total macrophages (CD68). The correlations between the immunohistochemical findings and clinical presentation were assessed. The findings revealed that cholesteatomas with more extensive ossicular erosion demonstrated a significantly higher number of M1 (CD80+) cells and a higher M1/M2 ratio than less invasive cholesteatomas (Wilcoxon test, p < 0.05). The extent of ossicular erosion correlated significantly with the M1/M2 ratio (Spearman correlation coefficient ρ = 0.4, p < 0.05). Thus, the degree of ossicular erosion in human acquired cholesteatoma appears to be related to the M1/M2 macrophage polarization. The investigation of macrophage polarization and functions in various clinical presentations of middle ear cholesteatoma is of great interest since it may contribute to the development of pharmaceutical treatment approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410162 | PMC |
http://dx.doi.org/10.3390/jcm11164826 | DOI Listing |
Clin Breast Cancer
August 2025
Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China. Electronic address:
Background: Triple-negative breast cancer (TNBC) carries a substantial risk of recurrence and metastasis, posing significant threats to patients' health and quality of life. Centrosomal protein 55 (CEP55) has been demonstrated to exhibit elevated expression levels in TNBC. However, its molecular regulatory mechanism in TNBC remains unclear.
View Article and Find Full Text PDFImmunol Lett
September 2025
Department of Clinical and Translational Science, College of Graduate Health Science, University of Tennessee Health Science Center, Memphis, Tennessee. Electronic address:
Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.
View Article and Find Full Text PDFCancer Lett
September 2025
State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2025
Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre
Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.
Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.
Biochem Pharmacol
September 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.
View Article and Find Full Text PDF