Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Ulcerative colitis (UC) may be exacerbated by Fusobacterium nucleatum (Fn) infection. However, the mechanism underlying Fn-mediated progression of UC has yet to be established. Here, we aimed to establish whether and how Fn-derived extracellular vesicles (Fn-EVs) participate in the development of experimental colitis through microRNAs (miRNAs).
Methods: EVs were isolated and purified by ultracentrifugation from Fn and Escherichia coli culture supernatants. Differentially expressed miRNAs in control intestinal epithelial cells (IECs) and Fn-EV-treated IECs were identified by miRNA sequencing. EVs were cocultured with IECs or administered to CARD3wt/CARD3-/- mice by gavage to assess inflammatory responses to and the mechanism of action of Fn-EVs.
Results: Fn-EVs promoted upregulation of proinflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor α), downregulation of anti-inflammatory IL-10 and intercellular tight junction proteins ZO-1 and occludin, and epithelial barrier dysfunction in IECs. Fn-EVs significantly aggravated experimental colitis in mice associated with Fn-EV-mediated downregulation of miR-574-5p expression and autophagy activation. Blockade of autophagy using chloroquine alleviates barrier damage exacerbated by Fn-EVs in vitro and in vivo. Inhibition of the miR-574-5p/CARD3 axis reduced the severity of colitis, epithelial barrier damage, and autophagy activation induced by Fn-EVs.
Conclusions: Here, we describe a new mechanism by which Fn-EVs mediate experimental colitis severity through miR-574-5p/CARD3-dependent autophagy activation, providing a novel target for UC monitoring and targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ibd/izac177 | DOI Listing |