98%
921
2 minutes
20
In this work, we explored coordination compounds featuring caffeine-based carbene co-ligands and tridentate dianionic pincer luminophores derived from 2,6-bis(1H-1,2,4-triazol-5-yl)pyridine (N), as well as from 2-phenyl-6-(1H-1,2,4-triazol-5-yl)pyridine (C), bearing either Ad (adamantyl) or tBu (tertiary butyl) substituents. The new 2-phenyl-6-(1H-1,2,4-triazol-5-yl)pyridine-based ligand precursors along with four Pt(II) complexes, namely Pt(C-tBu), Pt(C-Ad), Pt(N-tBu) and Pt(N-Ad) were characterized. Further on, the influence of the different substituents at the chelating luminophores and of the caffeine-based NHC-co-ligand on the photophysical properties (including photoluminescence quantum yields (Φ ), excited-state lifetimes (τ), radiative (k ), and non-radiative (k ) deactivation rate constants) was assessed in fluid solutions at room temperature (RT) and in frozen glassy matrices at 77 K. All four luminophores perform equivalently well within the experimental uncertainty. In deoxygenated fluid solutions at RT, photoluminescence quantum yields reaching up to 24 ± 2% and excited-state lifetimes of around 12 μs were found. The generally long excited-state lifetimes and only minor blue shift upon cooling to 77 K along with mostly well-resolved vibrational progressions point to metal-perturbed ligand-centered excited states. Notably, the yield of the complexation reaction in case of Pt(C-tBu) and Pt(C-Ad) was almost two times higher compared to Pt(N-tBu) and Pt(N-Ad). Cyclometallation is not an essential feature to achieve high photoluminescence quantum yields, but it can improve the synthetic efficiency. In summary, it can be observed that coordination chemical concepts based on natural products can lead to stable phosphorescent species with interesting excited-state properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13695 | DOI Listing |
Light Sci Appl
September 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.
Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.
View Article and Find Full Text PDFChem Soc Rev
September 2025
State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, environments and Materials, Guangxi University, Nanning 530004, China.
To date, Cu(I)-based metal halides with high photoluminescence quantum yields (PLQYs) have primarily focused on their zero-dimensional or one-dimensional structures, significantly reflecting the charge or carrier localization. Designing two-dimensional (2D) hybrid copper(I) halides remains a significant challenge for optoelectronic applications, particularly in simultaneously achieving high PLQY and exceptional structural stability. Here, we report a novel series of 2D hybrid Cu(I) halides, (TDMP)CuX (TDMP = 2,5-dimethylpiperazine and X = Cl, Br), synthesized through simple solution-cooling crystallization methods.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).
View Article and Find Full Text PDFSmall
September 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
III-V semiconductor nanocrystals (NCs) have emerged as a benign alternative to II-VI and IV-VI NCs, which are restricted due to the toxicity of the comprising elements. While InP NCs advanced significantly, the development of infrared-emitting InAs NCs has been relatively slow-paced. This is due to the synthetic challenges arising from the highly covalent bonding in InAs and the limited range of available arsenic sources.
View Article and Find Full Text PDF