98%
921
2 minutes
20
Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805044 | PMC |
http://dx.doi.org/10.1111/gcb.16371 | DOI Listing |
Geohistorical events are among the most important factors determining population genetic structure. The Sea of Japan is an intriguing area because of its connection to neighboring seas via shallow straits (< 140 m deep) and the occurrence of deep-water anoxic events during glacial periods. Despite repeated anoxic events, species with low dispersal capabilities have been reported at depths deeper than the straits in both the Sea of Japan and the Pacific Ocean.
View Article and Find Full Text PDFAlpine streams represent some of the most challenging yet ecologically valuable freshwater environments to study, due to their remoteness, fast flows and extreme climatic conditions. Traditional fish survey methods are often impractical or invasive in these habitats. This study presents a lightweight, low-cost, T-shaped remote underwater video (RUV) system optimized for fish monitoring in small, high-altitude streams of the European Alps.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: In critically ill patients with septic shock, adequate oxygenation is crucial and hypoxia should be avoided. However, hyperoxia has been linked to the formation of reactive oxygen species, inflammation, and vasoconstriction, which could potentially harm critically ill intensive care patients. Therefore, this study aimed to examine the association between oxygen exposure and mortality and to define optimal oxygen target ranges for this specific group of patients.
View Article and Find Full Text PDFWellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDF