Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cone-shaped mature HIV-1 capsid is the main orchestrator of early viral replication. After cytosolic entry, it transports the viral replication complex along microtubules toward the nucleus. While it was initially believed that the reverse transcribed genome is released from the capsid in the cytosol, recent observations indicate that a high amount of capsid protein (CA) remains associated with subviral complexes during import through the nuclear pore complex (NPC). Observation of postentry events via microscopic detection of HIV-1 CA is challenging, since epitope shielding limits immunodetection and the genetic fragility of CA hampers direct labeling approaches. Here, we present a minimally invasive strategy based on genetic code expansion and click chemistry that allows for site-directed fluorescent labeling of HIV-1 CA, while retaining virus morphology and infectivity. Thereby, we could directly visualize virions and subviral complexes using advanced microscopy, including nanoscopy and correlative imaging. Quantification of signal intensities of subviral complexes revealed an amount of CA associated with nuclear complexes in HeLa-derived cells and primary T cells consistent with a complete capsid and showed that treatment with the small molecule inhibitor PF74 did not result in capsid dissociation from nuclear complexes. Cone-shaped objects detected in the nucleus by electron tomography were clearly identified as capsid-derived structures by correlative microscopy. High-resolution imaging revealed dose-dependent clustering of nuclear capsids, suggesting that incoming particles may follow common entry routes. The cone-shaped capsid of HIV-1 has recently been recognized as a master organizer of events from cell entry of the virus to the integration of the viral genome into the host cell DNA. Fluorescent labeling of the capsid is essential to study its role in these dynamic events by microscopy, but viral capsid proteins are extremely challenging targets for the introduction of labels. Here we describe a minimally invasive strategy that allows us to visualize the HIV-1 capsid protein in infected cells by live-cell imaging and superresolution microscopy. Applying this strategy, we confirmed that, contrary to earlier assumptions, an equivalent of a complete capsid can enter the host cell nucleus through nuclear pores. We also observed that entering capsids cluster in the nucleus in a dose-dependent manner, suggesting that they may have followed a common entry route to a site suitable for viral genome release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600849PMC
http://dx.doi.org/10.1128/mbio.01959-22DOI Listing

Publication Analysis

Top Keywords

subviral complexes
12
capsid
10
genetic code
8
code expansion
8
nuclear capsids
8
routes cone-shaped
8
hiv-1 capsid
8
viral replication
8
capsid protein
8
minimally invasive
8

Similar Publications

The small hepatitis B surface antigen (SHBs) is the most abundant hepatitis B virus (HBV) protein in individuals infected with HBV, and clearance of HBV surface antigen, which is primarily composed of SHBs, is considered a surrogate biomarker for achieving a functional cure of chronic HBV. Understanding SHBs degradation is crucial for its elimination and targeted eradication strategies. This study demonstrates that SHBs undergoes degradation via a ubiquitin/proteasome pathway, primarily through K48-linked ubiquitination, with K122 as the critical ubiquitination site.

View Article and Find Full Text PDF

Cleavage and polyadenylation specificity factor 6 (CPSF6) is part of the cellular cleavage factor I mammalian (CFIm) complex that regulates mRNA processing and polyadenylation. CPSF6 also functions as an HIV-1 capsid (CA) binding host factor to promote viral DNA integration targeting into gene-dense regions of the host genome. However, the effects of CPSF6 on the activity of the HIV-1 preintegration complex (PIC)-the sub-viral machinery that carries out viral DNA integration-are unknown.

View Article and Find Full Text PDF

Background: Autophagic and endosomal pathways coordinately contribute to HBV virions and subviral particles (SVPs) production. To date, limited evidence supports that HBV and exosomes have a common pathway for their biogenesis and secretion. The final steps of HBV production and release have not yet been well studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the diversity of begomoviruses and other viruses in tomatoes using high-throughput sequencing of 154 samples from various Brazilian biomes collected between 2002-2017.
  • It identified a total of 16 begomoviruses and one other virus in the first set of samples, with some putative novel species newly discovered in specific regions.
  • In the second set, 14 viruses and subviral agents were found, highlighting a higher diversity and mixed infections in susceptible tomato samples compared to tolerant ones, suggesting that the tomato virus diversity in Neotropical regions is still underexplored.
View Article and Find Full Text PDF

Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts.

View Article and Find Full Text PDF