98%
921
2 minutes
20
Cochlear implants (CI) are widely used in patients to restore hearing function. Uncontrolled fibrosis in the cochleae induced by excess secretion of TGFβ1 seriously affects the effectiveness of CIs. siRNA is a potential therapeutic strategy to downregulate TGFβ1 specifically. However, treatment with siRNA in cochleae is difficult due to the poor penetration capability and instability of siRNA and the inaccessibility and vulnerability of cochleae. To address these challenges, we developed amino-functionalized mesoporous silica nanoparticle (MSN-NH)-modified electrode arrays to deliver siRNA-TGFβ1 into the inner ear. The shape, diameter, pore diameter, and zeta potential of MSN-NH were investigated. siRNA loading capability and protective effect of MSN-NH were determined by agarose gel electrophoresis assay. The cytotoxicity, cellular uptake assay, and TGFβ1 knockdown efficiency of MSN-NH were studied by CCK-8 assay, flow cytometry, and real-time PCR, respectively. MSN-NH-siTGFβ1 nanoparticles were absorbed into the electrode arrays and worked in the cochleae. MSN-NH-siTGFβ1-modified CI electrode arrays may be an attractive therapeutic clinical intervention strategy to inhibit cochlear implantation fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112753 | DOI Listing |
Chest
September 2025
Flinders Health and Medical Research Institute/Adelaide Institute for Sleep Health, Flinders University, Bedford Park, South Australia, Australia.
Background: Hypoglossal nerve stimulation (HNS) to treat obstructive sleep apnea (OSA) currently requires placement of a cuff or 'saddle' electrode around or adjacent to the hypoglossal nerve(s). Limitations for this therapy include cost, invasiveness, and variable efficacy.
Research Question: Can HNS applied via percutaneous implantation of a linear, multi-pair electrode array restore airflow to airway narrowing and/or obstruction, and improve airway collapsibility in people with OSA?
Study Design And Methods: Participants with OSA undergoing drug induced sleep endoscopy with propofol were instrumented with an epiglottic pressure catheter, nasal mask and pneumotachograph.
Front Toxicol
August 2025
Ncardia Services B.V., Leiden, Netherlands.
Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.
View Article and Find Full Text PDFPain Rep
October 2025
Physiology, Pharmacology and Neuroscience, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom.
Introduction: The dorsal horn (DH) of the spinal cord is physiologically immature at birth. Spinal excitability increases and wide dynamic range (WDR) neurons in lamina V have lowered activation thresholds and larger receptive field sizes.
Objective: The DH is composed of 5 laminae containing diverse interneuronal populations yet our understanding of the physiology of the DH is based on behavioural studies or extrapolation of single cell WDR recordings to the whole network.
Int J Mass Spectrom
December 2025
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
An electrostatic linear ion trap (ELIT) is used to trap ions between two ion mirrors with image current detection by central detection electrode. Transformation of the time-domain signal to the frequency-domain via Fourier transform (FT) yields an ion frequency spectrum that can be converted to a mass-to-charge scale. Injection of ions into an ELIT from an external ion source leads to a time-of-flight ion separation that ultimately determines the range of over which ions can be collected from a given ion injection step.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDF