Starch Digestion in Infants: An Update of Available In Vitro Methods-A Mini Review.

Plant Foods Hum Nutr

Instituto de Ciencia Y Tecnología de los Alimentos-Córdoba (ICYTAC) CONICET-UNC, Córdoba, Argentina.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Complementary feeding starts at around six months of age because neither breast milk nor formula assure the proper nutrition of infants. Therefore, along with breast milk, solid foods are gradually introduced, particularly cereal-based foods, which will provide starch as a new source of energy and nutrients. As a result, the need of an adequate in vitro digestion method to study the influence of different aspects of weaning period is unquestionable. This critical review summarizes the in vitro digestion methods available for the analysis of starch hydrolysis under infant conditions considering different features, namely, starch digestion, infant digestive conditions and in vitro models suitable for the study of starch digestion (static, semi-dynamic and dynamic). Key factors such as enzyme concentrations, transit time, oral, gastric and intestinal conditions and differences with current adult models, have been addressed. The need for standardized infant digestion models adapted to the complementary feeding period was discussed. Existing literature data demonstrate that more effort has to be done to improve the research on this issue, in order to obtain comparable results that would address a better understanding of the digestibility of different food nutrients under infant conditions facilitating the development of appropriate formulations that may assure proper infant nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11130-022-01001-1DOI Listing

Publication Analysis

Top Keywords

starch digestion
12
complementary feeding
8
breast milk
8
assure proper
8
vitro digestion
8
infant conditions
8
starch
5
digestion
5
infant
5
digestion infants
4

Similar Publications

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Resistant starches with additional functionalities, such as starch-polyphenol complexes, are generating great interest due to the increasing incidence of diet-related diseases. However, preparing these complexes remains a major challenge due to the incompatible structures of many natural phenolic compounds. Herein, three protocols were compared for preparing novel amylose (AM) complexes with polyphenol quercetin (Q) in the presence of lauric acid (LA).

View Article and Find Full Text PDF

The prevalence of nutrition-related non-communicable diseases like diabetes mellitus (DM) is exponentially increasing across the world. Particularly, type-2 diabetes mellitus (T2DM) is prevalent in sub-Saharan Africa (SSA) than in any other region of the world, with a significant effect on mortality and morbidity. T2DM is a disease known to be associated with elevated glucose levels in the blood, caused by numerous factors including dietary and lifestyle changes.

View Article and Find Full Text PDF

Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.

Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.

View Article and Find Full Text PDF

Exploring the effect of Curdlan and xanthan on physicochemical properties and multiscale structure of rice starch during extrusion.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:

Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.

View Article and Find Full Text PDF