98%
921
2 minutes
20
Covalently-bound organic silicate-aluminum hybrid coagulants (CBHyC) have been shown to efficiently remove low molecular weight organic contaminants from wastewater. However, the interaction dynamics and motivations during the coagulation of contaminant molecules by CBHyC are limited. In this study, a molecular dynamics (MD) simulation showed that CBHyC forms core-shell structure with the aliphatic carbon chains gather inside as a core and the hydrophilic quaternary ammonium-Si-Al complexes disperse outside as a shell. This wrapped structure allowed the coagulant to diffuse into solutions easily and capture target contaminants. The adsorption of anionic organic contaminants (e.g., diclofenac) onto the CBHyC aggregates was driven equally by van der Waals forces and electrostatic interactions. Cationic organic contaminants (e.g., tetracycline) were seldom bound to CBHyC because of substantial repulsive forces between cationic molecules and CBHyC. Neutrally-charged organic molecules were generally bound through hydrophobic interactions. For adenine and thymine deoxynucleotide, representatives of antibiotic resistance genes, van der Waals forces and electrostatic interaction became the dominant driving force with further movement for adenine and thymine, respectively. Driving forces between target contaminant and coagulant directly affect the size and stability of formed aggregate, following the coagulation efficiency of wastewater treatment. The findings of this study enrich the database of aggregation behavior between low molecular weight contaminants and CBHyC and contribute to further and efficient application of CBHyC in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135863 | DOI Listing |
Mikrochim Acta
September 2025
Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540, La Ràpita, Spain.
Palytoxin-like compounds, including ovatoxins, are potent emerging toxins responsible for human respiratory poisonings following inhalation of contaminated marine aerosols. Periodic massive proliferations of the ovatoxin-producing organism (Ostreopsis cf. ovata) worldwide, particularly in the Mediterranean, have caused severe toxic outbreaks, drawing the attention of health authorities.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll
The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.
View Article and Find Full Text PDFMar Environ Res
September 2025
Functional Biology Department (Ecology Area), Faculty of Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
Balancing socio-economic development with environmental quality in estuaries requires reliable tools for ecological assessment and informed management. Although various biological and (geo)chemical indices have been formulated to evaluate ecological quality status (EcoQS), transitional systems such as estuaries remain challenging to assess due to steep natural gradients and intense anthropogenic pressures, which can compromise the effectiveness of conventional indices. This study applied a practical, multi-criteria sediment assessment to evaluate benthic EcoQS in the Sado estuary, SW Portugal - a socio-ecological system strongly influenced by human activity.
View Article and Find Full Text PDFWater Res
September 2025
School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China.
The binding interactions between metal ions and dissolved organic matter (DOM) are ubiquitous in freshwater/marine aquatic environments where both coexist. Distinct from free metal ions or DOM, DOM-metal ions (DOM-Me) complexes have emerged as contaminants of emerging concern, primarily due to their altered physicochemical properties, modified migration and transformation patterns, enhanced environmental persistence, and changed ecotoxicity. However, based on the multi-source heterogeneity of DOM and the diversity of metal ions, systematic investigations into the interaction mechanisms and environmental implications of DOM-Me complexes in water environments remain scarce.
View Article and Find Full Text PDF