98%
921
2 minutes
20
African swine fever (ASF) is a devastating infectious disease that causes significant economic losses to the pig industry worldwide. Luteolin is abundant in onion leaves, carrots, broccoli, and apple skin and exerts various biological activities, including anti-cancer and anti-virus effects. Our aim was to demonstrate the mechanism of action and potent antiviral activity of luteolin against ASF virus (ASFV) in porcine alveolar macrophages. We performed cell viability, hemadsorption, indirect immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction assays to investigate the effect of luteolin on ASFV. Notably, luteolin restricted ASFV replication in a dose-dependent manner. The anti-ASFV activity of luteolin was maintained for 24-72 h. Subsequent experiments revealed that luteolin could block multiple stages of the ASFV replication cycle, including those at 6-9 h and 12-15 h after infection, instead of directly interacting with ASFV. Moreover, ASFV infection stimulated the expression of phosphorylated nuclear factor (NF)-κB, interleukin (IL)- 6, and phosphorylated signal transducer and activator of transcription 3 (STAT3). However, luteolin downregulated ASFV-induced NF-κB, IL-6, and STAT3 expression. Importantly, NF-κB agonist CU-T12-9 weakened the inhibitory effects of luteolin on NF-κB and STAT3. Moreover, CU-T12-9 partially restored the inhibitory effect of luteolin on ASFV. Similarly, luteolin reduced ASFV-induced activating transcription factor 6 (ATF6) expression, and CU-T12-9 weakened the inhibitory effect of luteolin on ATF6. Our findings suggested that luteolin inhibited ASFV replication by regulating the NF-κB/STAT3/ATF6 signaling pathway and might provide a rationale for anti-ASFV drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2022.109527 | DOI Listing |
FEMS Microbiol Rev
September 2025
CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.
View Article and Find Full Text PDFViruses
August 2025
National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, Ames, IA 50010, USA.
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large numbers of pigs, and sampling individual pigs, which represents the main strategy for current ASF surveillance, can be both costly and labor intensive. A study performed in Ghana was designed to estimate the diagnostic sensitivity of pen-based aggregate oral fluid testing for ASFV in infected pigs in a pen of 30 animals and to evaluate its utility as a tool to support surveillance of ASF in the US.
View Article and Find Full Text PDFVirology
August 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Chin
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious infectious disease. To date, no safe and effective vaccine or therapeutic drug is available for ASFV. In this study, we identified Anti-inflammatory agent 35 (A35) as a negative regulator of ASFV replication.
View Article and Find Full Text PDFJ Virol
August 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Unlabelled: African swine fever virus (ASFV) causes a severe hemorrhagic disease, posing a significant threat to the global pig industry. Although the ASFV encodes nearly 200 proteins, the functions of many remain unknown. Here, we identify the inner envelope protein pE146L as essential for ASFV replication.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
African swine fever virus (ASFV) causes global swine outbreaks, but its cellular pathogenesis is poorly understood. Using single-cell RNA data from ASFV-infected pig spleens across four timepoints, we identified macrophages as the primary viral reservoir, with infection driving lymphoid depletion and myeloid expansion. We characterized four functionally distinct macrophage subsets, including a metabolically reprogrammed SusceptibleMac population serving as the major viral niche and an AntiviralMac subset rapidly depleted during infection.
View Article and Find Full Text PDF