Cell-free fat extract protects septic lethality via restraining NLRP3 inflammasome activation.

Am J Transl Res

Department of Dermatology, The Third Xiangya Hospital, Central South University Changsha 410013, Hunan Province, P. R. China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sepsis is a dysregulated host response to infection with high mortality and current management cannot reach optimal remission. Previous studies have shown that cell-free fat extract (CEFFE) is a kind of bioactive extraction from adipose tissues and exhibits a potent anti-inflammatory effect on wound healing and inflammatory diseases. However, the potential role of CEFFE in sepsis remains unclear.

Methods: CEFFE was extracted from healthy donors and was intraperitoneally injected into septic mice. The septic mice models were constructed using lipopolysaccharide (LPS), E. coli, and cecal ligation and puncture (CLP). The survival of septic mice was detected for 96 h and Kaplan-Meier analysis was used to analyze the differences of survival rates. Lung tissues that were collected from septic mice were subjected to HE staining to evaluate the extent of lung injury, and the mice serum was obtained for inflammasome-related cytokines detection. Moreover, peritoneal macrophages were extracted from C57 mice and treated with CEFFE and/or inflammasome activators. The level of IL-1β, IL-18, IL-6, and TNF-α was detected by ELISA, and the activation of NLRP3 were evaluated by Western Blot. Total mtDNA and mitochondrial permeability transition pore were determined to explore the mitochondrial dysfunction in the activation of NLRP3 inflammasome with or without CEFEE. Coimmunoprecipitation (Co-IP) assays were performed to confirm the mechanism of NLRP3 activation induced by CEFFE.

Results: CEFFE significantly improved the survival of sepsis mice and alleviate sepsis-induced lung injury. Moreover, CEFFE significantly decreased the level of inflammasome-cytokines (IL-1β and IL-18) but not the pro-inflammatory cytokines such as IL-6 and TNF-α. Moreover, CEFFE markedly suppressed the canonical activation of NLRP3 inflammasome without affecting inflammasomes NLRC4 and AIM2. Additionally, the non-canonical activation of NLRP3 inflammasome was significantly inhibited by CEFFE. CEFFE treatment attenuated the mtDNA outflow and the increase of mitochondrial permeability induced by both canonical and non-canonical pathway of NLRP3 inflammasome activation. The results of Co-IP assays revealed that CEFFE remarkably attenuated the oligomerization of ASC and inhibited the association between NLRP3 and ASC.

Conclusion: Our study revealed that CEFFE could significantly alleviate sepsis-related injuries possibly by suppressing NLRP3 inflammasome activation. CEFFE was a promising approach for sepsis treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360875PMC

Publication Analysis

Top Keywords

nlrp3 inflammasome
24
septic mice
16
activation nlrp3
16
inflammasome activation
12
ceffe
12
nlrp3
9
cell-free fat
8
fat extract
8
activation
8
lung injury
8

Similar Publications

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Low-protein Calorie-restriction Mitigates Diabetic Mice Kidney Injury via the Gut-Kidney Axis.

Int J Vitam Nutr Res

August 2025

Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.

Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.

View Article and Find Full Text PDF

Profile of NT-0527, a brain penetrant NLRP3 Inflammasome inhibitor suitable as an tool compound for neuroinflammatory disorders.

RSC Med Chem

September 2025

NodThera Ltd. Suite 8, The Mansion, Chesterford Research Park, Little Chesterford, Saffron Walden Essex CB10 1XL UK

Inhibition of the NLRP3 inflammasome has emerged as a high potential treatment paradigm for the treatment of neuroinflammation, with demonstrated anti-neuroinflammatory effects in Parkinson's disease patients and a strong rationale in Alzheimer's disease and amyotrophic lateral sclerosis. To facilitate further progress in this field, brain penetrant NLRP3 inflammasome inhibitors as leads and tool compounds are required. We discovered a small molecule NLRP3 inflammasome inhibitor, NT-0527 (11), and extensively profiled this to reveal a highly potent, selective and brain penetrant compound.

View Article and Find Full Text PDF

The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor.

View Article and Find Full Text PDF