Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although ovarian cancer, a gynecological malignancy, has the highest fatality rate, it still lacks highly specific biomarkers, and the differential diagnosis of ovarian masses remains difficult to determine for gynecologists. Our study aimed to obtain ovarian cancer-specific protein candidates from the circulating small extracellular vesicles (sEVs) and develop a protein panel for ovarian cancer screening and differential diagnosis of ovarian masses. In our study, sEVs derived from the serum of healthy controls and patients with cystadenoma and ovarian cancer were investigated to obtain a cancer-specific proteomic profile. In a discovery cohort, 1119 proteins were identified, and significant differences in the protein profiles of EVs were observed among groups. Then, 23 differentially expressed proteins were assessed using the parallel reaction monitoring in a validation cohort. Through univariate and multivariate logistic regression analyses, a novel model comprising three proteins (fibrinogen gamma gene (FGG), mucin 16 (MUC16), and apolipoprotein (APOA4)) was established to screen patients with ovarian cancer. This model exhibited an area under the receiver operating characteristic curve (AUC) of 0.936 (95% CI, 0.888-0.984) with 92.0% sensitivity and 82.9% specificity. Another panel comprising serum CA125, sEV-APOA4, and sEV-CD5L showed excellent performance (AUC 0.945 (95% CI, 0.890-1.000), sensitivity of 88.0%, specificity of 93.3%, and accuracy of 89.2%) to distinguish malignancy from benign ovarian masses. Altogether, our study provided a proteomic signature of circulating sEVs in ovarian cancer. The diagnostic proteomic panel may complement current clinical diagnostic measures for screening ovarian cancer in the general population and the differential diagnosis of ovarian masses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367436PMC
http://dx.doi.org/10.3390/cancers14153719DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
28
ovarian masses
16
ovarian
12
differential diagnosis
12
diagnosis ovarian
12
protein panel
8
small extracellular
8
extracellular vesicles
8
cancer
7
protein
4

Similar Publications

Resistance to platinum-based drugs and PARP inhibitors (PARPi) is the leading cause of treatment failure in epithelial ovarian cancer (EOC). This study aimed to identify resistance mechanisms shared by both. Using bioinformatic analyses, EOC tissues, primary tumor cells and organoids, and chemoresistant cell lines, we identified lymphoid enhancer-binding factor 1 (LEF1) as a candidate, whose expression was increased in both platinum-resistant and PARPi-resistant tumors.

View Article and Find Full Text PDF

Granulosa cell tumors (GCTs) are rare ovarian neoplasms, accounting for 2-5% of all ovarian cancers. Two histological types have been described: juvenile (JGCT) and adult (AGCT), the latter accounting for around 95% of the GCTs. AGCTs are mostly diagnosed at an early stage and commonly have a good prognosis.

View Article and Find Full Text PDF

Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.

View Article and Find Full Text PDF

Purpose: Ovarian cancer ranks as a gynecological malignancy with poor prognosis, specifically if detected late. Primary treatment includes cytoreductive surgery and adjuvant chemotherapy with curative intent. Local anesthetics (LA) administered in the perioperative period may potentially impact patient outcome by several mechanisms.

View Article and Find Full Text PDF

Background: Homologous recombination deficiency (HRD)-related genetic mutations in ovarian high-grade serous carcinoma (HGSC) are known to be ethnic specific. Here, we assessed the diagnostic performance of HRD and its clinical implication in Korean HGSC patients using the SOPHiA DDM HRD Solution.

Methods: Sixty-three ovarian cancer (OC) patients were enrolled, including 53 with HGSC and 10 with other subtypes.

View Article and Find Full Text PDF