Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cost-efficient electrocatalysts to replace precious platinum group metals- (PGMs-) based catalysts for the hydrogen evolution reaction (HER) carry significant potential for sustainable energy solutions. Machine learning (ML) methods have provided new avenues for intelligent screening and predicting efficient heterogeneous catalysts in recent years. We coalesce density functional theory (DFT) and supervised ML methods to discover earth-abundant active heterogeneous NiCoCu-based HER catalysts. An intuitive generalized microstructure model was designed to study the adsorbate's surface coverage and generate input features for the ML process. The study utilizes optimized eXtreme Gradient Boost Regression (XGBR) models to screen NiCoCu alloy-based catalysts for HER. We show that the most active HER catalysts can be screened from an extensive set of catalysts with this approach. Therefore, our approach can provide an efficient way to discover novel heterogeneous catalysts for various electrochemical reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c01401DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
evolution reaction
8
catalysts
8
machine learning
8
heterogeneous catalysts
8
rational designing
4
designing bimetallic/trimetallic
4
bimetallic/trimetallic hydrogen
4
reaction catalysts
4
catalysts supervised
4

Similar Publications

Activating the Oxygen Evolution Performance of NiCuFe by Phosphorus Doping.

Langmuir

September 2025

College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.

The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.

View Article and Find Full Text PDF

We herein construct the Ce-O-Ti interface bridge in the CeO/N-TiCT heterojunction through an ultrasonic-assisted hydrothermal route as an efficient Pt-free hydrogen evolution electrocatalyst. The synergistic contribution of the heterogeneous Ce-O-Ti bridge and oxygen vacancies boosts the water dissociation and thus drastically reduces energy barriers of the hydrogen evolution reaction (HER). The optimal CeO/N-TiCT material requires only a small overpotential (51.

View Article and Find Full Text PDF

Artificial nacre based on polydopamine functionalized graphene oxide nanosheets constrained palladium nanocluster with enhanced mechanical properties and catalytical functionalities.

Int J Biol Macromol

September 2025

Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien

Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.

View Article and Find Full Text PDF

Surface reconstruction of electroless-deposited Ni-Co-P for large-current-density urea-assisted water splitting.

J Colloid Interface Sci

September 2025

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.

Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.

View Article and Find Full Text PDF