98%
921
2 minutes
20
This study aimed to evaluate the volatile compounds of chocolates made of Brazilian cocoas and statistically track them according to the products' sensorial profile in order to relate them to consumers' acceptance by preference map methodology. The intensity of the chocolate, acidity, woody, smoked, green, floral, burned, musty, and cocoa notes from chocolates produced with cocoa from different Brazilian states were analyzed by a trained panel and by 128 consumers. Samples from Côte d'Ivoire, which is known for its high-quality chocolate, were evaluated for comparison. Solid-phase microextraction headspace sampling/gas chromatography-mass spectrometry was employed to evaluate the samples' volatile compounds. One hundred volatile compounds were identified within the samples. The results from the preference maps showed that the maximum preference was found for chocolate made of cocoa from Rondônia, Bahia, and Espírito Santo and Côte d'Ivoire and organic samples from Pará. The ideal sample point was characterized by intense chocolate, floral, and woody notes and mild green and burned notes. The presence of furfural, 3-methyl butanal, phenethyl acetate, 2-phenyl-5-methyl-2-hexenal, methyl pyrazine, phenethyl acetate, 2-phenyl-5-methyl-2-hexenal, and tetramethyl pyrazine were shown to be important for consumer acceptance in the ideal product, whereas the presence of (Z)-2-heptenal and 2-pentyl furan may increase consumer rejection. 2,3-Methyl pyrazine, methyl pyrazine, and 2,3-butanediol, which are important volatile compounds previously reported in the literature, were statistically tracked to both positive and negative sample attributes and must be better explored concerning consumers' acceptance of chocolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111618 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
September 2025
Division of Immunology, Immunity to Infection & Respiratory Medicine, University of Manchester, United Kingdom.
Biomarkers based on volatile organic compounds (VOCs) measured in human breath have been investigated in a wide range of diseases. However, the excitement surrounding such biomarkers has not yet translated to the discovery of any that are ready for clinical implementation. A lack of standardisation in sampling and analysis has been identified as a key obstacle to the validation of potential biomarkers in in multi-centre studies.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.
Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Guangzhou, Guangdong
Volatile organic compounds (VOCs) are carbon-based chemicals characterized by high vapor pressure and low boiling points under standard temperature and pressure conditions. VOCs are categorized as exogenous or endogenous, depending on their source. Endogenous VOCs are metabolic byproducts eliminated via respiration.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR Chi
Patulin (PAT), a mycotoxin primarily produced by Penicillium species, presents a serious food safety challenge due to its widespread occurrence and harmful health effects. Among current detoxification approaches, yeast-based degradation is particularly promising, offering high efficiency, environmental sustainability, and preservation of food quality-key attributes for industrial application. However, the enzymatic pathways involved and the potential for concurrent quality enhancement remain poorly understood.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.
View Article and Find Full Text PDF