Implication toward a simple strategy to generate pH tunable FRET-based biosensing.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, India. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present contribution depicts a unique approach to generate tunable Förster resonance energy transfer (FRET) emission with variation of pH of the medium. The pH sensitive absorption of Doxorubicin leads to modification of spectral overlap between emission spectra of donor (Pyrazoline) and absorption spectra of acceptor (Doxorubicin) thereby sensing maximum FRET efficiency in an optimum pH (near pK of Doxorubicin). This drug molecule exhibits an instantaneous conformation change at a particular pH, which consequences on abrupt ON-and-OFF FRET efficiency. At elevated pH, both the drug molecules exhibit conformational change and form stable fluorescent exciplex, switching off the FRET emission. Confocal fluorescence images of live HepG2 cells imply that the sensor can proficiently go through the cell membrane and can be applied in the controlled delivery of drug to the tumor cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121687DOI Listing

Publication Analysis

Top Keywords

generate tunable
8
fret emission
8
fret efficiency
8
implication simple
4
simple strategy
4
strategy generate
4
tunable fret-based
4
fret-based biosensing
4
biosensing contribution
4
contribution depicts
4

Similar Publications

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF

Visible Light-Driven Membrane-Bound Compartment for Precise Regulation of Enzyme Activity.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF