Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mounting evidence indicates that histone modifications are involved in aging-associated cognitive decline (AACD) and can be transmitted to offspring over multiple generations under conditions of stress. Here, we investigated the effects of maternal sub-chronic inflammation caused by lipopolysaccharide (LPS) on AACD and histone modifications in the F1 and F2 generations of experimental mice as well as the potential sex specificity of intergenerational effects. In brief, F0-generation CD-1 dams were exposed to LPS (50 µg/kg) or saline (CON) during late pregnancy. Subsequently, F1 males and females (at 2 months-of-age) from the LPS treatment group were mated with non-littermates from the LPS group or wild-type mice to produce F2 generations of parental- (F2-LPS), paternal- (F2M-LPS) and maternal-origin (F2F-LPS) mice. Then, CON-F1 males and females were mated with wild-type mice to generate F2 generations of paternal- (F2M-CON) and maternal-origin (F2F-CON). Next, we evaluated the cognitive ability and levels of hippocampal H4K12ac and H3K9me3 in the F1 and F2 offspring at 3- and 13 months-of-age. Overall, F1 male and female LPS groups presented with elevated corticosterone (P < 0.001, P = 0.036, P = 0.025, 0.012, respectively) and cytokine responses, poorer cognitive performance (all P < 0.05) and H3K9 hypermethylation and H4K12 hypoacetylation in the dorsal hippocampus (all P < 0.05); these issues were carried over to the F2 generation via the parents, predominantly in the paternal lineage. Moreover, the levels of H3K9me3 and H4K12ac were significant correlated with cognitive performance (all P < 0.05), regardless of whether inflammatory insults had been incurred directly or indirectly. These findings indicated that gestational inflammatory insults in the F0 generation accelerated AACD in the F2 generation, along with H3K9 hypermethylation and H4K12 hypoacetylation in the hippocampus, and that these issues were derived from the F1 parents, especially from the F1 fathers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2022.08.001DOI Listing

Publication Analysis

Top Keywords

histone modifications
8
males females
8
wild-type mice
8
generations
5
mice
5
lps
5
maternal inflammation
4
inflammation induces
4
induces spatial
4
spatial learning
4

Similar Publications

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF

Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.

View Article and Find Full Text PDF

Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.

View Article and Find Full Text PDF

Opinion Letter to Sin et al (Science Advances, 2025), Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes.

View Article and Find Full Text PDF