Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although oil-water separation technology via wettability-controlled membranes has emerged as a promising technology to treat oily wastewater, membrane fouling by faulents such as sludge flocs and colloids, and the consequent clogging of pores, severely degrades the efficiency of filtration systems. One of the main promotors of fouling by faulents is oil fouling, which is also a form of fouling itself. Despite considerable practical and academic interest in the analysis of oil-fouled membranes, direct visualization of the entire process of oil infiltration into hydrophilic membranes is still preliminary owing to (i) the similar optical contrast and physical density between oil and water, (ii) the low penetration depth of imaging methods, and (iii) the lack of 3D segmentation capability. In this study, microcomputed X-ray tomography using tunable synchrotron radiation provided direct high-speed 3D visualization of the microscale dynamics of the oil infiltration of a prewetted hydrophilic filter membrane over time. Direct visualization of the interfacial dynamics of oil infiltration opens a window into the complex liquid (water/oil)-gas-solid interface and thus helps furnish an in-depth understanding of oil fouling in the prewetted membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c01051DOI Listing

Publication Analysis

Top Keywords

oil fouling
12
oil infiltration
12
visualization microscale
8
microscale dynamics
8
synchrotron radiation
8
fouling faulents
8
direct visualization
8
dynamics oil
8
oil
7
fouling
6

Similar Publications

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

Adsorption and interaction mechanisms of asphaltene subfractions on silica surfaces.

J Colloid Interface Sci

August 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Adsorption of asphaltenes onto mineral solids contributes to fouling, scaling, and plugging issues in the oil industry. Among asphaltene subfractions, those with strong oil/water interfacial activity are expected to possess superior adsorption abilities on mineral surfaces. In this study, interfacially non-active (INAA) and active (IAA) fractions were separated from whole asphaltenes.

View Article and Find Full Text PDF

An innovative composite membrane was developed by combining polyvinylidene fluoride (PVDF) with graphene oxide (GO), titania (TiO), and silica (SiO) nanoparticles (PGTS). This innovative membrane was created using solution casting and electrospinning techniques to enhance its surface area and hydrophilic characteristics, while incorporating photocatalytic properties for light-induced oil decomposition. The membrane structure was examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR).

View Article and Find Full Text PDF

Hierarchically crosslinked g-CN/aminated lignin/alginate aerogels for sustainable oil-in-water emulsion separation.

Int J Biol Macromol

September 2025

National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China. Electronic address:

Biomass-based materials face challenges in treating industrial oily wastewater, particularly stable oil-in-water emulsions, due to limitations like poor mechanical strength and fouling susceptibility. To address this, a robust g-CN/aminated lignin/sodium alginate (GNALS) aerogel was engineered via chemical/ionic dual crosslinking and freeze-drying. This design integrates exfoliated g-CN nanosheets (providing roughness and photocatalysis) and amine-functionalized lignin (natural crust agent and antioxidant) into an alginate matrix, forming a multi-network structure with enhanced mechanical robustness (4250 times self-weight load capacity, 0.

View Article and Find Full Text PDF

To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9.

View Article and Find Full Text PDF