Efficient Gene Silencing in Intact Plant Cells Using siRNA Delivered By Functional Graphene Oxide Nanoparticles.

Angew Chem Int Ed Engl

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delivery of small interfering RNA (siRNA) to intact plants for gene silencing mainly relies on viral vectors and Agrobacterium-mediated transformation due to the barrier of intact plant cell wall. Here, we reported that polymer functionalized graphene oxide nanoparticles (GONs) enable siRNA transfer into intact plant cells and bring about efficient gene silencing. We found that sheeted GONs could efficiently load siRNA to form small sized, near-spheroidal GONs-siRNA complex, which could be across the cell wall and internalize in the plant cell. The GONs-siRNA exhibited transient and strong silencing (97.2 % efficiency) in plant tissues at 24 h after treatment and returned to normal level at 5 days after treatment. This method has the obvious advantages of efficient, transient, simple, stability and well biocompatibility, which should greatly stimulate the application of nanomaterials as gene-engineering tools in plant research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202210014DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
intact plant
12
efficient gene
8
plant cells
8
graphene oxide
8
oxide nanoparticles
8
plant cell
8
cell wall
8
plant
6
silencing
4

Similar Publications

[Harnessing retroviral engineering for genome reprogramming].

Med Sci (Paris)

September 2025

CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.

The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Analysis of essential genes in by CRISPRi and Tn-seq.

J Bacteriol

September 2025

Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Essential genes are interesting in their own right and as potential antibiotic targets. To date, only one report has identified essential genes on a genome-wide scale in , a problematic pathogen for which treatment options are limited. That foundational study used large-scale transposon mutagenesis to identify 404 protein-encoding genes as likely to be essential for vegetative growth of the epidemic strain R20291.

View Article and Find Full Text PDF