Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human brain organoids replicate much of the cellular diversity and developmental anatomy of the human brain. However, the physiology of neuronal circuits within organoids remains under-explored. With high-density CMOS microelectrode arrays and shank electrodes, we captured spontaneous extracellular activity from brain organoids derived from human induced pluripotent stem cells. We inferred functional connectivity from spike timing, revealing a large number of weak connections within a skeleton of significantly fewer strong connections. A benzodiazepine increased the uniformity of firing patterns and decreased the relative fraction of weakly connected edges. Our analysis of the local field potential demonstrate that brain organoids contain neuronal assemblies of sufficient size and functional connectivity to co-activate and generate field potentials from their collective transmembrane currents that phase-lock to spiking activity. These results point to the potential of brain organoids for the study of neuropsychiatric diseases, drug action, and the effects of external stimuli upon neuronal networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338020PMC
http://dx.doi.org/10.1038/s41467-022-32115-4DOI Listing

Publication Analysis

Top Keywords

brain organoids
20
human brain
12
functional connectivity
8
brain
6
organoids
6
functional neuronal
4
neuronal circuitry
4
circuitry oscillatory
4
oscillatory dynamics
4
human
4

Similar Publications

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF

Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.

View Article and Find Full Text PDF

Human cerebral organoids model tumor initiation and infiltration in an autologous astrocyte-supported setting.

iScience

September 2025

Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Hessen, Germany.

Efforts to efficiently target brain tumors are constrained by the dearth of appropriate models to study tumor behavior toward treatment approaches as well as potential side effects to the surrounding normal tissue. We established a reproducible cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing , a common oncogene in brain tumors. GFP/c-MYC cells were isolated from tumor organoids and used in two different approaches: GFP/c-MYC cells co-cultured with cerebral organoid slices or fused as spheres to whole organoids.

View Article and Find Full Text PDF

Synergistic stress-relieving and cognitive-enhancing effects of walnut peptide and theanine in human brain organoid and mouse stress models.

Phytomedicine

August 2025

Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.

Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.

View Article and Find Full Text PDF