98%
921
2 minutes
20
There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid β and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41380-022-01693-6 | DOI Listing |
Int J Mol Sci
November 2024
Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
Nan Fang Yi Ke Da Xue Xue Bao
February 2024
Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China.
Objective: To improve the efficiency of induced differentiation of primitive neural epithelial cells derived from human induced pluripotent stem cells (hiPSCs-NECs) into functional midbrain dopaminergic progenitor cells (DAPs).
Methods: HiPSCs were cultured in mTeSR medium containing DMH1 (10 μmol/L), SB431542 (10 μmol/L), SHH (200 ng/mL), FGF8 (100 ng/mL), purmorphamine (2 μmol/L), CHIR99021 (3 μmol/L), and N2 (1%) for 12 days to induce their differentiation into primitive neuroepithelial cells (NECs). The hiPSCs-NECs were digested with collagenase Ⅳ and then cultured in neurobasal medium supplemented with 1% N2, 2% B27-A, BDNF (10 ng/mL), GDNF (10 ng/mL), AA, TGF-β, cAMP, and 1% GlutaMax in the presence of different concentrations of Rho kinase inhibitor Y27632, and the culture medium was changed the next day to remove Y27632.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
February 2025
School of Laboratory Medicine, Bengbu Medical University, Bengbu Anhui 233030.
Objectives: Parkinson's disease (PD) is a neurodegenerative disorder primarily caused by the loss of dopaminergic neurons (DA) in the brain. Since DA neurons are non-renewable, conventional therapies only alleviate symptoms without addressing the root cause. This study aims to reprogram astrocyte (AS) into DA neurons for transplantation into the brain to reconstruct damaged neural circuits and treat PD.
View Article and Find Full Text PDFMol Psychiatry
December 2023
Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
Mol Psychiatry
December 2023
Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.