Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pyroptosis, characterized by activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effector inflammatory factors, has been shown to play a crucial role in atherosclerosis development. Long noncoding RNAs (lncRNAs) are involved in the progression of pyroptosis. However, the role and mechanism of the novel lncRNA gastric adenocarcinoma associated, positive CD44 regulator (Gaplinc), in endothelial cell pyroptosis during atherosclerosis development remain unexplored. Bioinformatics was performed to evaluate dysregulated lncRNAs in atherosclerotic mice fed a high-fat diet. The effect of Gaplinc on atherosclerosis progression in vivo was assessed via Oil Red O staining and fluorescence in situ hybridization. Its function in oxidized low-density lipoprotein (ox-LDL)-induced pyroptosis of endothelial cells was determined through ectopic expression. Additionally, RNA pull-down and immunoprecipitation (RIP) assays were performed to determine Gaplinc and transcription factor SP1 interactions. Then the pyroptosis pathway proteins were analyzed via immunofluorescence and western blotting. We found that lncRNA Gaplinc was highly expressed in ox-LDL-induced endothelial cells as well as in the plaque and plasma of high-fat diet-treated ApoE mice. Gaplinc silencing significantly inhibited endothelial cell pyroptosis and atherosclerotic plaque formation. Mechanistically, Gaplinc could interact with SP1 to bind to the NLRP3 promoter and upregulate the target gene expression of NLRP3, facilitating endothelial cell pyroptosis and atherosclerotic plaque enlargement in high- fat diet-fed mice. In conclusion, our results revealed the underlying mechanism of the lncRNA Gaplinc /SP1/NLRP3 axis in endothelial cell pyroptosis, which may provide new potential targets for the treatment of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2022.110420DOI Listing

Publication Analysis

Top Keywords

endothelial cell
16
cell pyroptosis
16
lncrna gaplinc
12
endothelial cells
12
pyroptosis
9
atherosclerosis development
8
pyroptosis atherosclerotic
8
atherosclerotic plaque
8
endothelial
7
gaplinc
7

Similar Publications

Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

Organ-on-chip (OOC) technologies, also called microphysiological systems (MPS), offer dynamic microenvironments that improve upon static culture systems, yet widespread adoption has been hindered by fabrication complexity, reliance on polydimethylsiloxane (PDMS), and limited modularity. Here, a modular MPS platform is presented, designed for ease of use, reproducibility, and broad applicability. The system comprises layered elastomeric inserts for dual monolayer cell culture, which is clamped within a reusable acrylic cassette for perfusion studies.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) is a major complication of diabetes mellitus, characterised by retinal vasculopathy and oxidative stress. Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated cardiovascular benefits but has also been associated with mixed effects on DR progression. This study investigates the potential of semaglutide to attenuate DR progression by ameliorating retinal vasculopathy and oxidative stress in both in vivo and in vitro models.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF